Nuprl Lemma : poset_functor_extend-flip

C:SmallCategory. ∀I:Cname List. ∀L:name-morph(I;[]) ⟶ cat-ob(C). ∀E:i:nameset(I)
                                                                      ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                      ⟶ (cat-arrow(C) (L c) (L flip(c;i))).
i:nameset(I). ∀c:cat-ob(poset-cat(I)).
  poset_functor_extend(C;I;L;E;c;flip(c;i)) (E c) ∈ (cat-arrow(C) (L c) (L flip(c;i))) supposing (c i) 0 ∈ ℕ2


Proof




Definitions occuring in Statement :  poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2) poset-cat: poset-cat(J) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory nil: [] list: List int_seg: {i..j-} uimplies: supposing a all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uimplies: supposing a poset-functor-extends: poset-functor-extends(C;I;L;E;F) and: P ∧ Q functor-arrow: functor-arrow(F) pi2: snd(t) subtype_rel: A ⊆B cat-ob: cat-ob(C) pi1: fst(t) poset-cat: poset-cat(J) name-morph: name-morph(I;J) uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s]
Lemmas referenced :  small-category_wf list_wf name-morph-flip_wf cat-arrow_wf set_wf poset-cat_wf cat-ob_wf equal_wf isname_wf assert_wf all_wf extd-nameset_wf nameset_wf int_seg_wf equal-wf-T-base coordinate_name_wf nil_wf name-morph_wf subtype_rel_self poset_functor_extend-extends
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation productElimination sqequalRule dependent_set_memberEquality applyEquality isectElimination natural_numberEquality setElimination rename because_Cache baseClosed lambdaEquality setEquality functionEquality

Latex:
\mforall{}C:SmallCategory.  \mforall{}I:Cname  List.  \mforall{}L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C).  \mforall{}E:i:nameset(I)
                                                                                                                                            {}\mrightarrow{}  c:\{c:name-morph(I;[])| 
                                                                                                                                                        (c  i)  =  0\} 
                                                                                                                                            {}\mrightarrow{}  (cat-arrow(C)  (L  c) 
                                                                                                                                                    (L  flip(c;i))).
\mforall{}i:nameset(I).  \mforall{}c:cat-ob(poset-cat(I)).
    poset\_functor\_extend(C;I;L;E;c;flip(c;i))  =  (E  i  c)  supposing  (c  i)  =  0



Date html generated: 2016_06_16-PM-06_58_00
Last ObjectModification: 2016_01_18-PM-04_49_28

Theory : cubical!sets


Home Index