Nuprl Lemma : comp_path_wf
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ Compositon(A)]. ∀[a,b,c:{G ⊢ _:A}]. ∀[pth_a_b:{G ⊢ _:(Path_A a b)}].
∀[pth_b_c:{G ⊢ _:(Path_A b c)}].
  (pth_a_b + pth_b_c ∈ {G ⊢ _:(Path_A a c)})
Proof
Definitions occuring in Statement : 
comp_path: pth_a_b + pth_b_c
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
path-type: (Path_A a b)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
comp_path: pth_a_b + pth_b_c
, 
member: t ∈ T
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
true: True
Lemmas referenced : 
cubical-term_wf, 
cubical_set_cumulativity-i-j, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type_wf, 
path-type_wf, 
cubical-type-cumulativity2, 
cubical-path-app-0, 
cubical-type-cumulativity, 
subtype_rel_self, 
iff_weakening_equal, 
comp-path_wf, 
cubical-path-app_wf, 
interval-0_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
composition-structure_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
applyEquality, 
thin, 
instantiate, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
hyp_replacement
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].  \mforall{}[a,b,c:\{G  \mvdash{}  \_:A\}].  \mforall{}[pth\_a$_{b}\mbackslash{}ff2\000C4:\{G  \mvdash{}  \_:(Path\_A  a  b)\}].
\mforall{}[pth\_b$_{c}$:\{G  \mvdash{}  \_:(Path\_A  b  c)\}].
    (pth\_a$_{b}$  +  pth\_b$_{c}$  \mmember{}  \{G  \mvdash{}  \_:(Path\_A  a  c)\})
Date html generated:
2020_05_20-PM-04_58_09
Last ObjectModification:
2020_04_13-PM-02_08_22
Theory : cubical!type!theory
Home
Index