Nuprl Lemma : comp_path_wf

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ Compositon(A)]. ∀[a,b,c:{G ⊢ _:A}]. ∀[pth_a_b:{G ⊢ _:(Path_A b)}].
[pth_b_c:{G ⊢ _:(Path_A c)}].
  (pth_a_b pth_b_c ∈ {G ⊢ _:(Path_A c)})


Proof




Definitions occuring in Statement :  comp_path: pth_a_b pth_b_c composition-structure: Gamma ⊢ Compositon(A) path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] comp_path: pth_a_b pth_b_c member: t ∈ T squash: T subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q true: True
Lemmas referenced :  cubical-term_wf cubical_set_cumulativity-i-j equal_wf squash_wf true_wf istype-universe cubical-type_wf path-type_wf cubical-type-cumulativity2 cubical-path-app-0 cubical-type-cumulativity subtype_rel_self iff_weakening_equal comp-path_wf cubical-path-app_wf interval-0_wf subset-cubical-term2 sub_cubical_set_self composition-structure_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality sqequalRule equalityTransitivity equalitySymmetry universeIsType universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination natural_numberEquality hyp_replacement

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].  \mforall{}[a,b,c:\{G  \mvdash{}  \_:A\}].  \mforall{}[pth\_a$_{b}\mbackslash{}ff2\000C4:\{G  \mvdash{}  \_:(Path\_A  a  b)\}].
\mforall{}[pth\_b$_{c}$:\{G  \mvdash{}  \_:(Path\_A  b  c)\}].
    (pth\_a$_{b}$  +  pth\_b$_{c}$  \mmember{}  \{G  \mvdash{}  \_:(Path\_A  a  c)\})



Date html generated: 2020_05_20-PM-04_58_09
Last ObjectModification: 2020_04_13-PM-02_08_22

Theory : cubical!type!theory


Home Index