Nuprl Lemma : cubical-sigma_wf-level-type

[K:⊢''']. ∀[a,b:ℕ4]. ∀[A:{K ⊢_}]. ∀[B:{K.A ⊢_}].  (Σ B ∈ K ⊢levelsup(a;b) )


Proof




Definitions occuring in Statement :  levelsup: levelsup(x;y) ctt-level-type: {X ⊢lvl _} cubical-sigma: Σ B cube-context-adjoin: X.A cubical_set: CubicalSet int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} ctt-level-type: {X ⊢lvl _} eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt levelsup: levelsup(x;y) imax: imax(a;b) le_int: i ≤j lt_int: i <j bnot: ¬bb bfalse: ff subtype_rel: A ⊆B false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: nat: less_than: a < b squash: T
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties cubical-sigma_wf int_seg_subtype_special int_seg_cases cubical-type-cumulativity cubical-type-cumulativity2 cube-context-adjoin_wf full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf ctt-level-type_wf cube-context-adjoin_wf-level-type decidable__le intformnot_wf int_formula_prop_not_lemma istype-le int_seg_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis productElimination unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality hypothesisEquality sqequalRule hypothesis_subsumption applyEquality voidElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType dependent_set_memberEquality_alt imageElimination

Latex:
\mforall{}[K:\mvdash{}'''].  \mforall{}[a,b:\mBbbN{}4].  \mforall{}[A:\{K  \mvdash{}a  \_\}].  \mforall{}[B:\{K.A  \mvdash{}b  \_\}].    (\mSigma{}  A  B  \mmember{}  K  \mvdash{}levelsup(a;b)  )



Date html generated: 2020_05_20-PM-07_49_06
Last ObjectModification: 2020_05_07-AM-11_19_16

Theory : cubical!type!theory


Home Index