Nuprl Lemma : cubical-term-0-q0
∀[Gamma:j⊢]. ∀[B:{Gamma ⊢ _}]. ∀[z:{Gamma.𝕀 ⊢ _:(B)p}].  (((z)[0(𝕀)])p = z ∈ {Gamma.𝕀, (q=0) ⊢ _:(B)p})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-zero: (i=0)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
uimplies: b supposing a
, 
context-subset: Gamma, phi
, 
all: ∀x:A. B[x]
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-term-at: u(a)
, 
pi2: snd(t)
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf, 
subset-cubical-type, 
context-subset_wf, 
face-zero_wf, 
cc-snd_wf, 
context-subset-is-subset, 
I_cube_wf, 
cubical_set_cumulativity-i-j, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
context-subset-term-subtype, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
I_cube_pair_redex_lemma, 
face-zero-eq-1, 
cubical_type_at_pair_lemma, 
interval-type-at, 
istype-cubical-type-at, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
equalitySymmetry, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
independent_isectElimination, 
functionExtensionality, 
universeIsType, 
dependent_functionElimination, 
Error :memTop, 
setElimination, 
rename, 
productElimination, 
dependent_pairEquality_alt
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[B:\{Gamma  \mvdash{}  \_\}].  \mforall{}[z:\{Gamma.\mBbbI{}  \mvdash{}  \_:(B)p\}].    (((z)[0(\mBbbI{})])p  =  z)
Date html generated:
2020_05_20-PM-04_16_18
Last ObjectModification:
2020_04_10-PM-03_47_05
Theory : cubical!type!theory
Home
Index