Nuprl Lemma : discrete-pair-injection
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢].
  ∀f,g:{X ⊢ _:Σ discr(A) discrete-family(A;a.B[a])}.
    f = g ∈ {X ⊢ _:Σ discr(A) discrete-family(A;a.B[a])} 
    supposing discrete-pair(f) = discrete-pair(g) ∈ {X ⊢ _:discr(a:A × B[a])}
Proof
Definitions occuring in Statement : 
discrete-pair: discrete-pair(p)
, 
discrete-family: discrete-family(A;a.B[a])
, 
discrete-cubical-type: discr(T)
, 
cubical-sigma: Σ A B
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
cubical-term-at: u(a)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cubical-sigma: Σ A B
, 
cc-adjoin-cube: (v;u)
, 
discrete-family: discrete-family(A;a.B[a])
, 
discrete-cubical-type: discr(T)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
discrete-pair: discrete-pair(p)
, 
cubical-snd: p.2
, 
cubical-fst: p.1
, 
guard: {T}
Lemmas referenced : 
cubical-term-at_wf, 
cubical-sigma_wf, 
discrete-cubical-type_wf, 
discrete-family_wf, 
cubical_type_at_pair_lemma, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
cubical-term_wf, 
discrete-pair_wf, 
cubical_set_wf, 
istype-universe, 
pair-eta, 
subtype_rel_product, 
top_wf, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
functionExtensionality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
dependent_functionElimination, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
equalityIstype, 
instantiate, 
cumulativity, 
productEquality, 
because_Cache, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
functionIsTypeImplies, 
functionIsType, 
universeEquality, 
applyLambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].
    \mforall{}f,g:\{X  \mvdash{}  \_:\mSigma{}  discr(A)  discrete-family(A;a.B[a])\}.
        f  =  g  supposing  discrete-pair(f)  =  discrete-pair(g)
Date html generated:
2020_05_20-PM-03_41_11
Last ObjectModification:
2020_04_06-PM-07_13_54
Theory : cubical!type!theory
Home
Index