Nuprl Lemma : discrete-pair-injection

[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢].
  ∀f,g:{X ⊢ _:Σ discr(A) discrete-family(A;a.B[a])}.
    g ∈ {X ⊢ _:Σ discr(A) discrete-family(A;a.B[a])} 
    supposing discrete-pair(f) discrete-pair(g) ∈ {X ⊢ _:discr(a:A × B[a])}


Proof




Definitions occuring in Statement :  discrete-pair: discrete-pair(p) discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cubical-sigma: Σ B cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a cubical-term-at: u(a) so_lambda: λ2x.t[x] so_apply: x[s] cubical-sigma: Σ B cc-adjoin-cube: (v;u) discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) pi2: snd(t) subtype_rel: A ⊆B discrete-pair: discrete-pair(p) cubical-snd: p.2 cubical-fst: p.1 guard: {T}
Lemmas referenced :  cubical-term-at_wf cubical-sigma_wf discrete-cubical-type_wf discrete-family_wf cubical_type_at_pair_lemma I_cube_wf fset_wf nat_wf cubical-term-equal cubical-term_wf discrete-pair_wf cubical_set_wf istype-universe pair-eta subtype_rel_product top_wf istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality_alt applyEquality universeIsType dependent_functionElimination Error :memTop,  equalityTransitivity equalitySymmetry independent_isectElimination equalityIstype instantiate cumulativity productEquality because_Cache inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies functionIsTypeImplies functionIsType universeEquality applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].
    \mforall{}f,g:\{X  \mvdash{}  \_:\mSigma{}  discr(A)  discrete-family(A;a.B[a])\}.
        f  =  g  supposing  discrete-pair(f)  =  discrete-pair(g)



Date html generated: 2020_05_20-PM-03_41_11
Last ObjectModification: 2020_04_06-PM-07_13_54

Theory : cubical!type!theory


Home Index