Nuprl Lemma : fill-path_wf

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[x:{Gamma ⊢ _:(A)[1(𝕀)]}]. ∀[y:{Gamma ⊢ _:(A)[0(𝕀)]}].
[z:{Gamma.𝕀 ⊢ _:((A)[0(𝕀)])p}].
  (fill-path(Gamma;A;cA;x;y;z) ∈ {Gamma ⊢ _:(Path_(A)[1(𝕀)] app(transport-fun(Gamma;A;cA); y))}) supposing 
     (((z)[0(𝕀)] app(rev-transport-fun(Gamma;A;cA); x) ∈ {Gamma ⊢ _:(A)[0(𝕀)]}) and 
     ((z)[1(𝕀)] y ∈ {Gamma ⊢ _:(A)[0(𝕀)]}))


Proof




Definitions occuring in Statement :  fill-path: fill-path(Gamma;A;cA;x;y;z) rev-transport-fun: rev-transport-fun(Gamma;A;cA) transport-fun: transport-fun(Gamma;A;cA) composition-op: Gamma ⊢ CompOp(A) path-type: (Path_A b) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] squash: T cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x true: True uimplies: supposing a fill-path: fill-path(Gamma;A;cA;x;y;z) interval-1: 1(𝕀) and: P ∧ Q prop:
Lemmas referenced :  fillpath_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-0 cc-fst_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-1 csm_id_adjoin_fst_type_lemma cubical-term_wf cubical-type-cumulativity cubical-type-cumulativity2 csm-ap-term_wf cubical-app_wf_fun rev-transport-fun_wf composition-op_wf cubical-type_wf cubical_set_wf equal_wf transport-fun_wf squash_wf true_wf path-type_wf term-to-path_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache sqequalRule dependent_functionElimination Error :memTop,  lambdaEquality_alt imageElimination setElimination rename productElimination natural_numberEquality imageMemberEquality baseClosed inhabitedIsType equalityTransitivity equalitySymmetry hyp_replacement universeIsType independent_isectElimination axiomEquality equalityIstype isect_memberEquality_alt isectIsTypeImplies setEquality productEquality applyLambdaEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[x:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
\mforall{}[y:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].  \mforall{}[z:\{Gamma.\mBbbI{}  \mvdash{}  \_:((A)[0(\mBbbI{})])p\}].
    (fill-path(Gamma;A;cA;x;y;z)
      \mmember{}  \{Gamma  \mvdash{}  \_:(Path\_(A)[1(\mBbbI{})]  x  app(transport-fun(Gamma;A;cA);  y))\})  supposing 
          (((z)[0(\mBbbI{})]  =  app(rev-transport-fun(Gamma;A;cA);  x))  and 
          ((z)[1(\mBbbI{})]  =  y))



Date html generated: 2020_05_20-PM-04_56_44
Last ObjectModification: 2020_04_13-PM-02_20_54

Theory : cubical!type!theory


Home Index