Nuprl Lemma : fill-path_wf
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[x:{Gamma ⊢ _:(A)[1(𝕀)]}]. ∀[y:{Gamma ⊢ _:(A)[0(𝕀)]}].
∀[z:{Gamma.𝕀 ⊢ _:((A)[0(𝕀)])p}].
  (fill-path(Gamma;A;cA;x;y;z) ∈ {Gamma ⊢ _:(Path_(A)[1(𝕀)] x app(transport-fun(Gamma;A;cA); y))}) supposing 
     (((z)[0(𝕀)] = app(rev-transport-fun(Gamma;A;cA); x) ∈ {Gamma ⊢ _:(A)[0(𝕀)]}) and 
     ((z)[1(𝕀)] = y ∈ {Gamma ⊢ _:(A)[0(𝕀)]}))
Proof
Definitions occuring in Statement : 
fill-path: fill-path(Gamma;A;cA;x;y;z)
, 
rev-transport-fun: rev-transport-fun(Gamma;A;cA)
, 
transport-fun: transport-fun(Gamma;A;cA)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
path-type: (Path_A a b)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-app: app(w; u)
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-type: (AF)s
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
true: True
, 
uimplies: b supposing a
, 
fill-path: fill-path(Gamma;A;cA;x;y;z)
, 
interval-1: 1(𝕀)
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
fillpath_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
cc-fst_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-1, 
csm_id_adjoin_fst_type_lemma, 
cubical-term_wf, 
cubical-type-cumulativity, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
cubical-app_wf_fun, 
rev-transport-fun_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
equal_wf, 
transport-fun_wf, 
squash_wf, 
true_wf, 
path-type_wf, 
term-to-path_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
universeIsType, 
independent_isectElimination, 
axiomEquality, 
equalityIstype, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setEquality, 
productEquality, 
applyLambdaEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[x:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
\mforall{}[y:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].  \mforall{}[z:\{Gamma.\mBbbI{}  \mvdash{}  \_:((A)[0(\mBbbI{})])p\}].
    (fill-path(Gamma;A;cA;x;y;z)
      \mmember{}  \{Gamma  \mvdash{}  \_:(Path\_(A)[1(\mBbbI{})]  x  app(transport-fun(Gamma;A;cA);  y))\})  supposing 
          (((z)[0(\mBbbI{})]  =  app(rev-transport-fun(Gamma;A;cA);  x))  and 
          ((z)[1(\mBbbI{})]  =  y))
Date html generated:
2020_05_20-PM-04_56_44
Last ObjectModification:
2020_04_13-PM-02_20_54
Theory : cubical!type!theory
Home
Index