Nuprl Lemma : pres-c2_wf

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:composition-function{j:l,i:l}(G.𝕀;T)].
  (pres-c2(G;phi;f;t;t0;cT) ∈ {G ⊢ _:(A)[1(𝕀)][phi |⟶ app(f; t)[1]]})


Proof




Definitions occuring in Statement :  pres-c2: pres-c2(G;phi;f;t;t0;cT) composition-function: composition-function{j:l,i:l}(Gamma;A) partial-term-1: u[1] partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pres-c2: pres-c2(G;phi;f;t;t0;cT) all: x:A. B[x] implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} partial-term-1: u[1] squash: T prop: true: True
Lemmas referenced :  composition-function_wf cube-context-adjoin_wf interval-type_wf constrained-cubical-term_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical_set_cumulativity-i-j partial-term-0_wf istype-cubical-term context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval thin-context-subset cubical-fun_wf cubical-type_wf cubical_set_wf comp_term_wf subset-cubical-term context-adjoin-subset4 csm-id-adjoin_wf-interval-1 subset-cubical-term2 sub_cubical_set_self csm-cubical-fun csm-id-adjoin_wf interval-1_wf cubical-app_wf_fun cubical-fun-subset context-subset-term-subtype partial-term-1_wf context-subset-is-subset csm-cubical-app squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut inhabitedIsType hypothesis lambdaFormation_alt thin equalityIstype hypothesisEquality sqequalHypSubstitution equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType introduction extract_by_obid isectElimination instantiate applyEquality because_Cache sqequalRule Error :memTop,  independent_isectElimination setElimination rename dependent_set_memberEquality_alt lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:composition-function\{j:l,i:l\}(G.\mBbbI{};T)].
    (pres-c2(G;phi;f;t;t0;cT)  \mmember{}  \{G  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  app(f;  t)[1]]\})



Date html generated: 2020_05_20-PM-05_26_11
Last ObjectModification: 2020_04_18-PM-10_57_26

Theory : cubical!type!theory


Home Index