Nuprl Lemma : presw-pres-c2

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 ⊢ Compositon(T)].
  ((((presw(G;phi;f;t;t0;cT))p+)[1(𝕀)])[1(𝕀)] pres-c2(G;phi;f;t;t0;cT) ∈ {G ⊢ _:(A)[1(𝕀)]})


Proof




Definitions occuring in Statement :  presw: presw(G;phi;f;t;t0;cT) pres-c2: pres-c2(G;phi;f;t;t0;cT) composition-structure: Gamma ⊢ Compositon(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s cc-fst: p interval-type: 𝕀 csm+: tau+ csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x constant-cubical-type: (X) cc-snd: q csm-ap-type: (AF)s csm-comp: F pi2: snd(t) compose: g pi1: fst(t) pres-c2: pres-c2(G;phi;f;t;t0;cT) presw: presw(G;phi;f;t;t0;cT) member: t ∈ T all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B implies:  Q guard: {T} pres-v: pres-v(G;phi;t;t0;cT) prop: composition-structure: Gamma ⊢ Compositon(A) squash: T partial-term-0: u[0]
Lemmas referenced :  csm-cubical-app csm-cubical-fun cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf interval-1_wf cubical-term-eqcd csm-ap-term_wf cubical-fun_wf csm-id-adjoin_wf-interval-1 composition-structure_wf constrained-cubical-term_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical_set_cumulativity-i-j partial-term-0_wf istype-cubical-term context-subset_wf face-type_wf csm-face-type cc-fst_wf_interval thin-context-subset cubical-type_wf cubical_set_wf fill_term_1 cubical-app_wf_fun comp_term_wf subset-cubical-term context-adjoin-subset4 equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis dependent_functionElimination instantiate hypothesisEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination applyEquality lambdaEquality_alt cumulativity universeIsType universeEquality hyp_replacement inhabitedIsType lambdaFormation_alt equalityIstype independent_functionElimination applyLambdaEquality setElimination rename imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  \mvdash{}  Compositon(T)].
    ((((presw(G;phi;f;t;t0;cT))p+)[1(\mBbbI{})])[1(\mBbbI{})]  =  pres-c2(G;phi;f;t;t0;cT))



Date html generated: 2020_05_20-PM-05_28_08
Last ObjectModification: 2020_04_18-PM-10_58_47

Theory : cubical!type!theory


Home Index