Nuprl Lemma : eu-lt-null-segment2
∀e:EuclideanPlane. ∀[p:{p:Point| O_X_p} ]. ∀[a,b:Point].  (False) supposing ((a = b ∈ Point) and p < |ab|)
Proof
Definitions occuring in Statement : 
eu-lt: p < q, 
eu-length: |s|, 
eu-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-X: X, 
eu-O: O, 
eu-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
false: False, 
set: {x:A| B[x]} , 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
false: False, 
prop: ℙ, 
euclidean-plane: EuclideanPlane, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
and: P ∧ Q
Lemmas referenced : 
eu-lt_wf, 
eu-between-eq_wf, 
eu-O_wf, 
eu-X_wf, 
eu-length_wf, 
eu-mk-seg_wf, 
equal_wf, 
eu-point_wf, 
set_wf, 
euclidean-plane_wf, 
eu-lt-null-segment
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
equalitySymmetry, 
thin, 
hyp_replacement, 
Error :applyLambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
dependent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
equalityTransitivity, 
voidElimination, 
lambdaEquality, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[p:\{p:Point|  O\_X\_p\}  ].  \mforall{}[a,b:Point].    (False)  supposing  ((a  =  b)  and  p  <  |ab|)
 Date html generated: 
2016_10_26-AM-07_42_06
 Last ObjectModification: 
2016_07_12-AM-08_08_17
Theory : euclidean!geometry
Home
Index