Nuprl Lemma : p4eu
∀e:EuclideanPlane. ∀a,b,c,A,B,C:Point.
  (ab=AB ∧ ac=AC ∧ bac = BAC) 
⇒ (bc=BC ∧ abc = ABC ∧ bca = BCA ∧ Cong3(abc,ABC)) 
  supposing Triangle(a;b;c) ∧ Triangle(A;B;C)
Proof
Definitions occuring in Statement : 
eu-cong-tri: Cong3(abc,a'b'c')
, 
eu-cong-angle: abc = xyz
, 
eu-tri: Triangle(a;b;c)
, 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
eu-tri: Triangle(a;b;c)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
cand: A c∧ B
, 
prop: ℙ
, 
eu-cong-angle: abc = xyz
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
eu-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced : 
eu-point_wf, 
eu-congruent_wf, 
eu-cong-angle_wf, 
eu-tri_wf, 
euclidean-plane_wf, 
eu-sas, 
equal_wf, 
not_wf, 
eu-congruence-identity, 
false_wf, 
eu-between-eq_wf, 
exists_wf, 
eu-between-eq-trivial-right, 
eu-congruent-iff-length, 
eu-length-flip
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
independent_pairFormation, 
productEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
equalityTransitivity, 
universeEquality, 
dependent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,A,B,C:Point.
    (ab=AB  \mwedge{}  ac=AC  \mwedge{}  bac  =  BAC)  {}\mRightarrow{}  (bc=BC  \mwedge{}  abc  =  ABC  \mwedge{}  bca  =  BCA  \mwedge{}  Cong3(abc,ABC)) 
    supposing  Triangle(a;b;c)  \mwedge{}  Triangle(A;B;C)
Date html generated:
2016_10_26-AM-07_46_19
Last ObjectModification:
2016_07_12-AM-08_16_54
Theory : euclidean!geometry
Home
Index