Nuprl Lemma : p4eu

e:EuclideanPlane. ∀a,b,c,A,B,C:Point.
  (ab=AB ∧ ac=AC ∧ bac BAC)  (bc=BC ∧ abc ABC ∧ bca BCA ∧ Cong3(abc,ABC)) 
  supposing Triangle(a;b;c) ∧ Triangle(A;B;C)


Proof




Definitions occuring in Statement :  eu-cong-tri: Cong3(abc,a'b'c') eu-cong-angle: abc xyz eu-tri: Triangle(a;b;c) euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q eu-tri: Triangle(a;b;c) not: ¬A implies:  Q false: False uall: [x:A]. B[x] euclidean-plane: EuclideanPlane cand: c∧ B prop: eu-cong-angle: abc xyz exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) eu-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced :  eu-point_wf eu-congruent_wf eu-cong-angle_wf eu-tri_wf euclidean-plane_wf eu-sas equal_wf not_wf eu-congruence-identity false_wf eu-between-eq_wf exists_wf eu-between-eq-trivial-right eu-congruent-iff-length eu-length-flip
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination equalityEquality extract_by_obid isectElimination setElimination rename hypothesis independent_pairFormation productEquality because_Cache independent_isectElimination independent_functionElimination equalitySymmetry hyp_replacement Error :applyLambdaEquality,  equalityTransitivity universeEquality dependent_pairFormation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,A,B,C:Point.
    (ab=AB  \mwedge{}  ac=AC  \mwedge{}  bac  =  BAC)  {}\mRightarrow{}  (bc=BC  \mwedge{}  abc  =  ABC  \mwedge{}  bca  =  BCA  \mwedge{}  Cong3(abc,ABC)) 
    supposing  Triangle(a;b;c)  \mwedge{}  Triangle(A;B;C)



Date html generated: 2016_10_26-AM-07_46_19
Last ObjectModification: 2016_07_12-AM-08_16_54

Theory : euclidean!geometry


Home Index