Nuprl Lemma : cong-angle-out-exists

g:EuclideanPlane. ∀a,b,c,x,y,z,a',c',p:Point.
  (abc ≅a xyz
   a ≠ b
   c ≠ b
   p ≠ b
   x ≠ y
   z ≠ y
   ((out(b aa') ∧ out(b cc')) ∧ a'-p-c')
   (∃x',z',p':Point
       (((x'-p'-z' ∧ Cong3(a'bc',x'yz')) ∧ out(y xx') ∧ out(y zz'))
       ∧ (x'p' ≅ a'p ∧ p'z' ≅ pc')
       ∧ bp ≅ yp'
       ∧ x'yp' ≅a a'bp)))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane exists: x:A. B[x] subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a geo-out: out(p ab) prop: cand: c∧ B uiff: uiff(P;Q) basic-geometry-: BasicGeometry- iff: ⇐⇒ Q geo-strict-between: a-b-c geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz
Lemmas referenced :  geo-proper-extend-exists geo-O_wf geo-X_wf geo-sep-O-X geo-sep-sym geo-strict-between-sep3 euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-out_wf geo-strict-between_wf geo-sep_wf geo-cong-angle_wf geo-point_wf geo-sas2 geo-congruent-iff-length out-preserves-angle-cong_1 geo-out-iff-between1 geo-strict-between-implies-between geo-between-symmetry geo-congruent-between-exists geo-strict-between-sep2 geo-cong-tri_wf geo-congruent_wf geo-congruent-symmetry geo-congruent-sep geo-length-flip geo-inner-five-segment geo-between-trivial geo-between_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin productElimination sqequalRule hypothesisEquality setElimination rename hypothesis because_Cache independent_functionElimination applyEquality instantiate isectElimination independent_isectElimination productIsType universeIsType inhabitedIsType equalitySymmetry independent_pairFormation dependent_pairFormation_alt equalityTransitivity

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z,a',c',p:Point.
    (abc  \mcong{}\msuba{}  xyz
    {}\mRightarrow{}  a  \mneq{}  b
    {}\mRightarrow{}  c  \mneq{}  b
    {}\mRightarrow{}  p  \mneq{}  b
    {}\mRightarrow{}  x  \mneq{}  y
    {}\mRightarrow{}  z  \mneq{}  y
    {}\mRightarrow{}  ((out(b  aa')  \mwedge{}  out(b  cc'))  \mwedge{}  a'-p-c')
    {}\mRightarrow{}  (\mexists{}x',z',p':Point
              (((x'-p'-z'  \mwedge{}  Cong3(a'bc',x'yz'))  \mwedge{}  out(y  xx')  \mwedge{}  out(y  zz'))
              \mwedge{}  (x'p'  \mcong{}  a'p  \mwedge{}  p'z'  \mcong{}  pc')
              \mwedge{}  bp  \mcong{}  yp'
              \mwedge{}  x'yp'  \mcong{}\msuba{}  a'bp)))



Date html generated: 2019_10_16-PM-01_31_14
Last ObjectModification: 2018_12_13-PM-04_02_36

Theory : euclidean!plane!geometry


Home Index