Nuprl Lemma : cong-angle-out-exists
∀g:EuclideanPlane. ∀a,b,c,x,y,z,a',c',p:Point.
  (abc ≅a xyz
  
⇒ a ≠ b
  
⇒ c ≠ b
  
⇒ p ≠ b
  
⇒ x ≠ y
  
⇒ z ≠ y
  
⇒ ((out(b aa') ∧ out(b cc')) ∧ a'-p-c')
  
⇒ (∃x',z',p':Point
       (((x'-p'-z' ∧ Cong3(a'bc',x'yz')) ∧ out(y xx') ∧ out(y zz'))
       ∧ (x'p' ≅ a'p ∧ p'z' ≅ pc')
       ∧ bp ≅ yp'
       ∧ x'yp' ≅a a'bp)))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
geo-out: out(p ab)
, 
prop: ℙ
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
basic-geometry-: BasicGeometry-
, 
iff: P 
⇐⇒ Q
, 
geo-strict-between: a-b-c
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-cong-angle: abc ≅a xyz
Lemmas referenced : 
geo-proper-extend-exists, 
geo-O_wf, 
geo-X_wf, 
geo-sep-O-X, 
geo-sep-sym, 
geo-strict-between-sep3, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-out_wf, 
geo-strict-between_wf, 
geo-sep_wf, 
geo-cong-angle_wf, 
geo-point_wf, 
geo-sas2, 
geo-congruent-iff-length, 
out-preserves-angle-cong_1, 
geo-out-iff-between1, 
geo-strict-between-implies-between, 
geo-between-symmetry, 
geo-congruent-between-exists, 
geo-strict-between-sep2, 
geo-cong-tri_wf, 
geo-congruent_wf, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-length-flip, 
geo-inner-five-segment, 
geo-between-trivial, 
geo-between_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
productElimination, 
sqequalRule, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
productIsType, 
universeIsType, 
inhabitedIsType, 
equalitySymmetry, 
independent_pairFormation, 
dependent_pairFormation_alt, 
equalityTransitivity
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z,a',c',p:Point.
    (abc  \mcong{}\msuba{}  xyz
    {}\mRightarrow{}  a  \mneq{}  b
    {}\mRightarrow{}  c  \mneq{}  b
    {}\mRightarrow{}  p  \mneq{}  b
    {}\mRightarrow{}  x  \mneq{}  y
    {}\mRightarrow{}  z  \mneq{}  y
    {}\mRightarrow{}  ((out(b  aa')  \mwedge{}  out(b  cc'))  \mwedge{}  a'-p-c')
    {}\mRightarrow{}  (\mexists{}x',z',p':Point
              (((x'-p'-z'  \mwedge{}  Cong3(a'bc',x'yz'))  \mwedge{}  out(y  xx')  \mwedge{}  out(y  zz'))
              \mwedge{}  (x'p'  \mcong{}  a'p  \mwedge{}  p'z'  \mcong{}  pc')
              \mwedge{}  bp  \mcong{}  yp'
              \mwedge{}  x'yp'  \mcong{}\msuba{}  a'bp)))
Date html generated:
2019_10_16-PM-01_31_14
Last ObjectModification:
2018_12_13-PM-04_02_36
Theory : euclidean!plane!geometry
Home
Index