Nuprl Lemma : cong-angle-preserves-lsep_weak

g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (x yz  abc ≅a xyz  (¬¬bc))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] basic-geometry: BasicGeometry uimplies: supposing a guard: {T} cand: c∧ B rev_implies:  Q subtype_rel: A ⊆B prop: basic-geometry-: BasicGeometry- geo-cong-angle: abc ≅a xyz geo-eq: a ≡ b oriented-plane: OrientedPlane geo-strict-between: a-b-c
Lemmas referenced :  not-lsep-iff-colinear geo-colinear-symmetry geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf istype-void geo-cong-angle_wf geo-point_wf geo-colinear-cases false_wf stable__false geo-eq_wf geo-strict-between_wf geo-out_weakening geo-eq_weakening geo-cong-angle-symm2 not-lsep-if-out geo-cong-angle_functionality angle-cong-preserves-zero-angle angle-cong-preserves-straight-angle geo-between-symmetry geo-strict-between-implies-between lsep-not-between geo-between-out euclidean-plane-axioms geo-sep-sym geo-strict-between-sep2 geo-strict-between-sep1 geo-out_inversion geo-strict-between-sep3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis productElimination independent_functionElimination isectElimination sqequalRule independent_isectElimination because_Cache independent_pairFormation voidElimination functionIsType universeIsType applyEquality instantiate inhabitedIsType

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (x  \#  yz  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  (\mneg{}\mneg{}a  \#  bc))



Date html generated: 2019_10_16-PM-01_58_00
Last ObjectModification: 2018_11_08-PM-02_04_37

Theory : euclidean!plane!geometry


Home Index