Nuprl Lemma : cong-angle-preserves-lsep_weak
∀g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (x # yz 
⇒ abc ≅a xyz 
⇒ (¬¬a # bc))
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
basic-geometry-: BasicGeometry-
, 
geo-cong-angle: abc ≅a xyz
, 
geo-eq: a ≡ b
, 
oriented-plane: OrientedPlane
, 
geo-strict-between: a-b-c
Lemmas referenced : 
not-lsep-iff-colinear, 
geo-colinear-symmetry, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
istype-void, 
geo-cong-angle_wf, 
geo-point_wf, 
geo-colinear-cases, 
false_wf, 
stable__false, 
geo-eq_wf, 
geo-strict-between_wf, 
geo-out_weakening, 
geo-eq_weakening, 
geo-cong-angle-symm2, 
not-lsep-if-out, 
geo-cong-angle_functionality, 
angle-cong-preserves-zero-angle, 
angle-cong-preserves-straight-angle, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
lsep-not-between, 
geo-between-out, 
euclidean-plane-axioms, 
geo-sep-sym, 
geo-strict-between-sep2, 
geo-strict-between-sep1, 
geo-out_inversion, 
geo-strict-between-sep3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
isectElimination, 
sqequalRule, 
independent_isectElimination, 
because_Cache, 
independent_pairFormation, 
voidElimination, 
functionIsType, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (x  \#  yz  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  (\mneg{}\mneg{}a  \#  bc))
Date html generated:
2019_10_16-PM-01_58_00
Last ObjectModification:
2018_11_08-PM-02_04_37
Theory : euclidean!plane!geometry
Home
Index