Nuprl Lemma : geo-SS_functionality
∀[g:EuclideanPlane]. ∀[a,b:Point]. ∀[u:{u:Point| u leftof ab} ]. ∀[v:{v:Point| v leftof ba} ]. ∀[a',b':Point].
∀[u':{u:Point| u leftof a'b'} ]. ∀[v':{v:Point| v leftof b'a'} ].
  (geo-SS(g;a;b;u;v) ≡ geo-SS(g;a';b';u';v')) supposing (v ≡ v' and u ≡ u' and b ≡ b' and a ≡ a')
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-SS: geo-SS(g;a;b;u;v)
, 
geo-eq: a ≡ b
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
subtract: n - m
, 
cons: [a / b]
, 
select: L[n]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
top: Top
, 
l_all: (∀x∈L.P[x])
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
basic-geometry: BasicGeometry
, 
iff: P 
⇐⇒ Q
, 
oriented-plane: OrientedPlane
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
geo-eq: a ≡ b
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
euclidean-plane: EuclideanPlane
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
left-right-sep, 
istype-less_than, 
istype-le, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
length_of_nil_lemma, 
length_of_cons_lemma, 
geo-between-implies-colinear, 
geo-colinear-is-colinear-set, 
geo-colinear_wf, 
not-lsep-iff-colinear, 
istype-void, 
geo-lsep_wf, 
lsep-all-sym2, 
geo-intersection-unicity, 
geo-between_functionality, 
geo-left_functionality, 
geo-eq_weakening, 
geo-colinear_functionality, 
geo-point_wf, 
geo-left_wf, 
geo-eq_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
sq_stable__geo-eq, 
geo-SS_wf
Rules used in proof : 
productIsType, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
functionIsType, 
promote_hyp, 
voidElimination, 
setIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
functionIsTypeImplies, 
lambdaEquality_alt, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
productElimination, 
because_Cache, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:EuclideanPlane].  \mforall{}[a,b:Point].  \mforall{}[u:\{u:Point|  u  leftof  ab\}  ].  \mforall{}[v:\{v:Point|  v  leftof  ba\}  ].
\mforall{}[a',b':Point].  \mforall{}[u':\{u:Point|  u  leftof  a'b'\}  ].  \mforall{}[v':\{v:Point|  v  leftof  b'a'\}  ].
    (geo-SS(g;a;b;u;v)  \mequiv{}  geo-SS(g;a';b';u';v'))  supposing  (v  \mequiv{}  v'  and  u  \mequiv{}  u'  and  b  \mequiv{}  b'  and  a  \mequiv{}  a')
Date html generated:
2019_10_29-AM-09_16_34
Last ObjectModification:
2019_10_18-PM-03_36_51
Theory : euclidean!plane!geometry
Home
Index