Nuprl Lemma : geo-SS_functionality

[g:EuclideanPlane]. ∀[a,b:Point]. ∀[u:{u:Point| leftof ab} ]. ∀[v:{v:Point| leftof ba} ]. ∀[a',b':Point].
[u':{u:Point| leftof a'b'} ]. ∀[v':{v:Point| leftof b'a'} ].
  (geo-SS(g;a;b;u;v) ≡ geo-SS(g;a';b';u';v')) supposing (v ≡ v' and u ≡ u' and b ≡ b' and a ≡ a')


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-SS: geo-SS(g;a;b;u;v) geo-eq: a ≡ b geo-left: leftof bc geo-point: Point uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  subtract: m cons: [a b] select: L[n] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) rev_implies:  Q cand: c∧ B basic-geometry: BasicGeometry iff: ⇐⇒ Q oriented-plane: OrientedPlane prop: false: False not: ¬A geo-eq: a ≡ b squash: T sq_stable: SqStable(P) guard: {T} subtype_rel: A ⊆B and: P ∧ Q implies:  Q all: x:A. B[x] euclidean-plane: EuclideanPlane uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  left-right-sep istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-int itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le length_of_nil_lemma length_of_cons_lemma geo-between-implies-colinear geo-colinear-is-colinear-set geo-colinear_wf not-lsep-iff-colinear istype-void geo-lsep_wf lsep-all-sym2 geo-intersection-unicity geo-between_functionality geo-left_functionality geo-eq_weakening geo-colinear_functionality geo-point_wf geo-left_wf geo-eq_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype sq_stable__geo-eq geo-SS_wf
Rules used in proof :  productIsType dependent_pairFormation_alt approximateComputation unionElimination natural_numberEquality dependent_set_memberEquality_alt independent_pairFormation functionIsType promote_hyp voidElimination setIsType isectIsTypeImplies isect_memberEquality_alt universeIsType functionIsTypeImplies lambdaEquality_alt dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype imageElimination baseClosed imageMemberEquality independent_functionElimination sqequalRule independent_isectElimination instantiate applyEquality productElimination because_Cache lambdaFormation_alt inhabitedIsType hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:EuclideanPlane].  \mforall{}[a,b:Point].  \mforall{}[u:\{u:Point|  u  leftof  ab\}  ].  \mforall{}[v:\{v:Point|  v  leftof  ba\}  ].
\mforall{}[a',b':Point].  \mforall{}[u':\{u:Point|  u  leftof  a'b'\}  ].  \mforall{}[v':\{v:Point|  v  leftof  b'a'\}  ].
    (geo-SS(g;a;b;u;v)  \mequiv{}  geo-SS(g;a';b';u';v'))  supposing  (v  \mequiv{}  v'  and  u  \mequiv{}  u'  and  b  \mequiv{}  b'  and  a  \mequiv{}  a')



Date html generated: 2019_10_29-AM-09_16_34
Last ObjectModification: 2019_10_18-PM-03_36_51

Theory : euclidean!plane!geometry


Home Index