Nuprl Lemma : geo-intersection-unicity

e:BasicGeometry. ∀a,b,c,d,p,q:Point.
  ((¬Colinear(a;b;c))  c ≠  Colinear(a;b;p)  Colinear(a;b;q)  Colinear(c;d;p)  Colinear(c;d;q)  p ≡ q)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-eq: a ≡ b geo-sep: a ≠ b geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  or: P ∨ Q stable: Stable{P} geo-eq: a ≡ b false: False not: ¬A uimplies: supposing a guard: {T} subtype_rel: A ⊆B basic-geometry: BasicGeometry uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] geo-colinear: Colinear(a;b;c) subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) so_apply: x[s1;s2;s3] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B exists: x:A. B[x] and: P ∧ Q
Lemmas referenced :  minimal-not-not-excluded-middle minimal-double-negation-hyp-elim or_wf false_wf stable__not geo-point_wf not_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf geo-colinear_wf geo-eq_weakening geo-colinear_functionality geo-colinear-same lelt_wf length_of_nil_lemma length_of_cons_lemma list_ind_nil_lemma list_ind_cons_lemma geo-colinear-is-colinear-set exists_wf equal_wf l_member_wf cons_member nil_wf cons_wf geo-colinear-append geo-between_wf
Rules used in proof :  unionElimination voidElimination independent_functionElimination functionEquality because_Cache sqequalRule independent_isectElimination instantiate applyEquality hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution impliesLevelFunctionality promote_hyp levelHypothesis impliesFunctionality addLevel baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality voidEquality isect_memberEquality lambdaEquality inlFormation inrFormation productElimination independent_pairFormation dependent_pairFormation dependent_functionElimination productEquality

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d,p,q:Point.
    ((\mneg{}Colinear(a;b;c))
    {}\mRightarrow{}  c  \mneq{}  d
    {}\mRightarrow{}  Colinear(a;b;p)
    {}\mRightarrow{}  Colinear(a;b;q)
    {}\mRightarrow{}  Colinear(c;d;p)
    {}\mRightarrow{}  Colinear(c;d;q)
    {}\mRightarrow{}  p  \mequiv{}  q)



Date html generated: 2017_10_02-PM-06_20_33
Last ObjectModification: 2017_08_05-PM-04_15_10

Theory : euclidean!plane!geometry


Home Index