Nuprl Lemma : geo-col-between-cases
∀e:EuclideanPlane. ∀a,b,c,x:Point.  (a-b-c 
⇒ Colinear(a;x;c) 
⇒ (¬¬(x_a_b ∨ a_x_b ∨ b_x_c ∨ b_c_x)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-strict-between: a-b-c
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
geo-eq: a ≡ b
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
basic-geometry: BasicGeometry
, 
stable: Stable{P}
, 
basic-geometry-: BasicGeometry-
Lemmas referenced : 
geo-colinear-cases, 
not_wf, 
geo-between_wf, 
stable__not, 
geo-eq_wf, 
geo-sep-sym, 
geo-strict-between-sep1, 
istype-void, 
geo-strict-between_wf, 
geo-strict-between-implies-between, 
geo-between-symmetry, 
geo-between-inner-trans, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-colinear_wf, 
geo-point_wf, 
geo-between-trivial2, 
geo-between_functionality, 
geo-eq_weakening, 
geo-between-trivial, 
false_wf, 
geo-sep_wf, 
minimal-double-negation-hyp-elim, 
geo-strict-between_functionality, 
geo-colinear_functionality, 
minimal-not-not-excluded-middle, 
geo-between-middle-or, 
geo-strict-between-sep2, 
geo-strict-between-sep3, 
geo-between-exchange3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
because_Cache, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
unionEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
universeIsType, 
functionIsType, 
unionIsType, 
inlFormation_alt, 
independent_isectElimination, 
voidElimination, 
instantiate, 
inhabitedIsType, 
productElimination, 
inrFormation_alt, 
unionElimination, 
functionEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x:Point.
    (a-b-c  {}\mRightarrow{}  Colinear(a;x;c)  {}\mRightarrow{}  (\mneg{}\mneg{}(x\_a\_b  \mvee{}  a\_x\_b  \mvee{}  b\_x\_c  \mvee{}  b\_c\_x)))
Date html generated:
2019_10_16-PM-01_24_59
Last ObjectModification:
2019_07_21-PM-11_23_46
Theory : euclidean!plane!geometry
Home
Index