Nuprl Lemma : geo-col-between-cases

e:EuclideanPlane. ∀a,b,c,x:Point.  (a-b-c  Colinear(a;x;c)  (¬¬(x_a_b ∨ a_x_b ∨ b_x_c ∨ b_c_x)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-between: a_b_c geo-point: Point all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T uall: [x:A]. B[x] prop: or: P ∨ Q subtype_rel: A ⊆B geo-eq: a ≡ b uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q basic-geometry: BasicGeometry stable: Stable{P} basic-geometry-: BasicGeometry-
Lemmas referenced :  geo-colinear-cases not_wf geo-between_wf stable__not geo-eq_wf geo-sep-sym geo-strict-between-sep1 istype-void geo-strict-between_wf geo-strict-between-implies-between geo-between-symmetry geo-between-inner-trans euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-colinear_wf geo-point_wf geo-between-trivial2 geo-between_functionality geo-eq_weakening geo-between-trivial false_wf geo-sep_wf minimal-double-negation-hyp-elim geo-strict-between_functionality geo-colinear_functionality minimal-not-not-excluded-middle geo-between-middle-or geo-strict-between-sep2 geo-strict-between-sep3 geo-between-exchange3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination because_Cache isectElimination hypothesisEquality sqequalRule unionEquality applyEquality hypothesis independent_functionElimination universeIsType functionIsType unionIsType inlFormation_alt independent_isectElimination voidElimination instantiate inhabitedIsType productElimination inrFormation_alt unionElimination functionEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x:Point.
    (a-b-c  {}\mRightarrow{}  Colinear(a;x;c)  {}\mRightarrow{}  (\mneg{}\mneg{}(x\_a\_b  \mvee{}  a\_x\_b  \mvee{}  b\_x\_c  \mvee{}  b\_c\_x)))



Date html generated: 2019_10_16-PM-01_24_59
Last ObjectModification: 2019_07_21-PM-11_23_46

Theory : euclidean!plane!geometry


Home Index