Nuprl Lemma : geo-non-parallel_wf

[g:EuclideanParPlane]. ∀[l:Line]. ∀[L:l,m:Line//l || m].  (geo-non-parallel(g;l;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-non-parallel: geo-non-parallel(g;l;L) euclidean-parallel-plane: EuclideanParPlane geo-Aparallel: || m geo-line: Line quotient: x,y:A//B[x; y] uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T geo-non-parallel: geo-non-parallel(g;l;L) so_lambda: λ2x.t[x] implies:  Q prop: so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] and: P ∧ Q so_apply: x[s] exists: x:A. B[x] guard: {T}
Lemmas referenced :  squash_wf all_wf equal_wf quotient_wf geo-Aparallel_wf euclidean-planes-subtype geoline-subtype1 geo-Aparallel-equiv subtype_quotient geo-line_wf exists_wf geo-point_wf geo-incident_wf euclidean-plane-structure-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache lambdaEquality functionEquality hypothesisEquality applyEquality hypothesis independent_isectElimination dependent_functionElimination productEquality axiomEquality equalityTransitivity equalitySymmetry instantiate isect_memberEquality

Latex:
\mforall{}[g:EuclideanParPlane].  \mforall{}[l:Line].  \mforall{}[L:l,m:Line//l  ||  m].    (geo-non-parallel(g;l;L)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-01_11_59
Last ObjectModification: 2018_05_11-PM-01_16_28

Theory : euclidean!plane!geometry


Home Index