Nuprl Lemma : geo-non-parallel_wf
∀[g:EuclideanParPlane]. ∀[l:Line]. ∀[L:l,m:Line//l || m].  (geo-non-parallel(g;l;L) ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-non-parallel: geo-non-parallel(g;l;L)
, 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-Aparallel: l || m
, 
geo-line: Line
, 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
geo-non-parallel: geo-non-parallel(g;l;L)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
squash_wf, 
all_wf, 
equal_wf, 
quotient_wf, 
geo-Aparallel_wf, 
euclidean-planes-subtype, 
geoline-subtype1, 
geo-Aparallel-equiv, 
subtype_quotient, 
geo-line_wf, 
exists_wf, 
geo-point_wf, 
geo-incident_wf, 
euclidean-plane-structure-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality, 
functionEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
isect_memberEquality
Latex:
\mforall{}[g:EuclideanParPlane].  \mforall{}[l:Line].  \mforall{}[L:l,m:Line//l  ||  m].    (geo-non-parallel(g;l;L)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-01_11_59
Last ObjectModification:
2018_05_11-PM-01_16_28
Theory : euclidean!plane!geometry
Home
Index