Nuprl Lemma : geo-triangle-inequality-lt-sep

e:BasicGeometry. ∀a,b,c,d,g,h:Point.
  (|ab| < |gh| |cd|  |cd| < |ab| |gh|  |gh| < |cd| |ab|  ((a ≠ b ∧ g ≠ h) ∧ c ≠ d))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q squash: T true: True uiff: uiff(P;Q) false: False
Lemmas referenced :  geo-lt_wf geo-length_wf geo-mk-seg_wf geo-add-length_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-add-length-lt-sep geo-sep-iff-or-lt geo-length_wf1 geo-add-length_wf1 geo-sep-or geo-sep_wf geo-lt_transitivity geo-le_weakening-lt squash_wf true_wf geo-length-type_wf geo-add-length-zero2 subtype_rel_self iff_weakening_equal geo-add-length-cancel-left-lt geo-lt-sep geo-add-length-comm geo-lt-null-segment
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin universeIsType introduction extract_by_obid isectElimination hypothesisEquality setElimination rename because_Cache inhabitedIsType applyEquality instantiate independent_isectElimination sqequalRule dependent_functionElimination independent_functionElimination unionElimination inlFormation_alt lambdaEquality_alt dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality voidElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d,g,h:Point.
    (|ab|  <  |gh|  +  |cd|  {}\mRightarrow{}  |cd|  <  |ab|  +  |gh|  {}\mRightarrow{}  |gh|  <  |cd|  +  |ab|  {}\mRightarrow{}  ((a  \mneq{}  b  \mwedge{}  g  \mneq{}  h)  \mwedge{}  c  \mneq{}  d))



Date html generated: 2019_10_16-PM-01_39_12
Last ObjectModification: 2019_02_19-PM-01_06_35

Theory : euclidean!plane!geometry


Home Index