Nuprl Lemma : geo-zero-point-sep-iff-sep

e:BasicGeometry. ∀a,b:Point.  (X ≠ |ab| ⇐⇒ a ≠ b)


Proof




Definitions occuring in Statement :  geo-length: |s| geo-mk-seg: ab basic-geometry: BasicGeometry geo-X: X geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: rev_implies:  Q or: P ∨ Q squash: T true: True uiff: uiff(P;Q) false: False
Lemmas referenced :  geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-X_wf geo-length_wf1 geo-mk-seg_wf geo-point_wf geo-sep-iff-or-lt geo-between-trivial geo-O_wf geo-between_wf geo-lt_wf squash_wf true_wf geo-length-type_wf geo-length-equality geo-length_wf subtype_rel_self iff_weakening_equal geo-lt-sep geo-lt-null-segment geo-zero-lt-iff geo-length-property trivial-zero-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule dependent_functionElimination setElimination rename because_Cache lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt productElimination independent_functionElimination unionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality voidElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b:Point.    (X  \mneq{}  |ab|  \mLeftarrow{}{}\mRightarrow{}  a  \mneq{}  b)



Date html generated: 2019_10_16-PM-01_38_07
Last ObjectModification: 2019_02_18-PM-07_47_10

Theory : euclidean!plane!geometry


Home Index