Nuprl Lemma : hypotenuse-leg-congruence
∀e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  (Rabc 
⇒ Rxyz 
⇒ ac ≅ xz 
⇒ ab ≅ xy 
⇒ a ≠ b 
⇒ x ≠ y 
⇒ b ≠ c 
⇒ y ≠ z 
⇒ bc ≅ yz)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
right-angle: Rabc
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
Lemmas referenced : 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-congruent_wf, 
right-angle_wf, 
geo-point_wf, 
geo-proper-extend-exists, 
geo-inner-five-segment, 
geo-strict-between-implies-between, 
geo-congruent-iff-length, 
geo-add-length-between, 
geo-add-length_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
adjacent-right-angles-supplementary, 
geo-sep-sym, 
right-angle-symmetry, 
congruence-preserves-right-angle2, 
geo-strict-between-sep3, 
geo-length-flip, 
geo-congruent-refl, 
right-angle-SAS, 
geo-congruent-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    (Rabc  {}\mRightarrow{}  Rxyz  {}\mRightarrow{}  ac  \mcong{}  xz  {}\mRightarrow{}  ab  \mcong{}  xy  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  x  \mneq{}  y  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  y  \mneq{}  z  {}\mRightarrow{}  bc  \mcong{}  yz)
Date html generated:
2019_10_16-PM-01_53_16
Last ObjectModification:
2019_08_20-AM-10_59_50
Theory : euclidean!plane!geometry
Home
Index