Nuprl Lemma : congruence-preserves-right-angle2

e:BasicGeometry. ∀a,b,c:Point.  (Rabc  (∀a',b',c':Point.  (abc ≅a a'b'c'  Ra'b'c')))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry right-angle: Rabc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry: BasicGeometry exists: x:A. B[x] and: P ∧ Q geo-cong-tri: Cong3(abc,a'b'c') uall: [x:A]. B[x] uimplies: supposing a cand: c∧ B prop: subtype_rel: A ⊆B guard: {T} geo-out: out(p ab) geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m
Lemmas referenced :  cong-angle-out-exists-cong3 geo-cong-angle-symm2 congruence-preserves-right-angle geo-congruent-symmetry geo-cong-angle_wf right-angle_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf right-angle-colinear geo-sep-sym geo-colinear-is-colinear-set geo-out-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than right-angle-colinear2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination independent_pairFormation because_Cache isectElimination independent_isectElimination universeIsType inhabitedIsType applyEquality instantiate sqequalRule isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    (Rabc  {}\mRightarrow{}  (\mforall{}a',b',c':Point.    (abc  \mcong{}\msuba{}  a'b'c'  {}\mRightarrow{}  Ra'b'c')))



Date html generated: 2019_10_16-PM-01_50_25
Last ObjectModification: 2019_06_07-PM-04_10_01

Theory : euclidean!plane!geometry


Home Index