Nuprl Lemma : in-hull-unique3
∀[g:OrientedPlane]. ∀[xs:{xs:Point List| geo-general-position(g;xs)} ]. ∀[i,j,k:ℕ||xs||].
  ((((((¬(j = k ∈ ℤ)) ∧ (¬(j = i ∈ ℤ))) ∧ (¬(k = i ∈ ℤ))) ∧ jk ∈ Hull(xs)) ∧ ji ∈ Hull(xs)) 
⇒ False)
Proof
Definitions occuring in Statement : 
in-hull: ij ∈ Hull(xs)
, 
geo-general-position: geo-general-position(g;xs)
, 
oriented-plane: OrientedPlane
, 
geo-point: Point
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
false: False
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
Lemmas referenced : 
list_wf, 
set_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
oriented-plane_wf, 
subtype_rel_transitivity, 
oriented-plane-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
length_wf, 
int_seg_wf, 
geo-general-position_wf, 
in-hull_wf, 
equal_wf, 
not_wf, 
in-hull-unique1
Rules used in proof : 
lambdaEquality, 
sqequalRule, 
instantiate, 
applyEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
intEquality, 
productEquality, 
voidElimination, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
isect_memberFormation, 
lambdaFormation, 
dependent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[g:OrientedPlane].  \mforall{}[xs:\{xs:Point  List|  geo-general-position(g;xs)\}  ].  \mforall{}[i,j,k:\mBbbN{}||xs||].
    ((((((\mneg{}(j  =  k))  \mwedge{}  (\mneg{}(j  =  i)))  \mwedge{}  (\mneg{}(k  =  i)))  \mwedge{}  jk  \mmember{}  Hull(xs))  \mwedge{}  ji  \mmember{}  Hull(xs))  {}\mRightarrow{}  False)
Date html generated:
2018_05_22-PM-00_07_18
Last ObjectModification:
2017_12_12-PM-03_05_32
Theory : euclidean!plane!geometry
Home
Index