Nuprl Lemma : in-hull_wf

[g:OrientedPlane]. ∀[xs:{xs:Point List| geo-general-position(g;xs)} ]. ∀[i,j:ℕ||xs||].
  ij ∈ Hull(xs) ∈ ℙ supposing ¬(i j ∈ ℤ)


Proof




Definitions occuring in Statement :  in-hull: ij ∈ Hull(xs) geo-general-position: geo-general-position(g;xs) oriented-plane: OrientedPlane geo-point: Point length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] prop: not: ¬A member: t ∈ T set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] top: Top all: x:A. B[x] false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k not: ¬A cand: c∧ B and: P ∧ Q int_seg: {i..j-} prop: implies:  Q so_lambda: λ2x.t[x] guard: {T} subtype_rel: A ⊆B in-hull: ij ∈ Hull(xs) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-general-position_wf list_wf set_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat int_seg_properties left-test_wf assert_wf equal_wf not_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry-_wf Error :oriented-plane_wf,  subtype_rel_transitivity Error :oriented-plane-subtype,  basic-geometry--subtype geo-point_wf length_wf int_seg_wf all_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality productEquality independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation productElimination lambdaFormation dependent_set_memberEquality because_Cache intEquality functionEquality lambdaEquality independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality natural_numberEquality isectElimination sqequalHypSubstitution extract_by_obid sqequalRule rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:OrientedPlane].  \mforall{}[xs:\{xs:Point  List|  geo-general-position(g;xs)\}  ].  \mforall{}[i,j:\mBbbN{}||xs||].
    ij  \mmember{}  Hull(xs)  \mmember{}  \mBbbP{}  supposing  \mneg{}(i  =  j)



Date html generated: 2017_10_02-PM-06_51_41
Last ObjectModification: 2017_08_08-PM-00_39_02

Theory : euclidean!plane!geometry


Home Index