Nuprl Lemma : perp-aux2

e:HeytingGeometry. ∀a,b,c,p,q,r:Point.  (a bc  a-p-b  c-q-b  a-r-c  qr)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a exists: x:A. B[x] and: P ∧ Q heyting-geometry: HeytingGeometry euclidean-plane: EuclideanPlane basic-geometry: BasicGeometry geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m cand: c∧ B basic-geometry-: BasicGeometry-
Lemmas referenced :  geo-strict-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-triangle_wf geo-point_wf perp-aux1 geo-triangle-colinear geo-strict-between-sep3 geo-colinear-is-colinear-set geo-strict-between-implies-colinear subtype_rel_self basic-geo-axioms_wf geo-left-axioms_wf length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf geo-triangle-symmetry geo-strict-between-sep2 geo-sep-sym geo-strict-between-sep1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache dependent_functionElimination independent_functionElimination productElimination setEquality productEquality cumulativity isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,p,q,r:Point.    (a  \#  bc  {}\mRightarrow{}  a-p-b  {}\mRightarrow{}  c-q-b  {}\mRightarrow{}  a-r-c  {}\mRightarrow{}  p  \#  qr)



Date html generated: 2017_10_02-PM-07_07_45
Last ObjectModification: 2017_08_10-PM-03_38_38

Theory : euclidean!plane!geometry


Home Index