Nuprl Lemma : sg-assoc

[sg:s-Group]. ∀[x,y,z:Point].  (x (y z)) ≡ ((x y) z)


Proof




Definitions occuring in Statement :  sg-op: (x y) s-group: s-Group ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  false: False not: ¬A ss-eq: x ≡ y sq_stable: SqStable(P) sg-op: (x y) squash: T or: P ∨ Q guard: {T} implies:  Q prop: all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ s-group: s-Group member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  s-group_wf s-group_subtype1 sg-op_wf sq_stable__ss-eq or_wf ss-sep_wf ss-eq_wf all_wf ss-point_wf subtype_rel_self
Rules used in proof :  voidElimination isect_memberEquality dependent_functionElimination productElimination independent_functionElimination imageElimination baseClosed imageMemberEquality Error :applyLambdaEquality,  rename setElimination equalitySymmetry equalityTransitivity functionExtensionality lambdaEquality productEquality because_Cache setEquality functionEquality isectElimination extract_by_obid tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution hypothesisEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[sg:s-Group].  \mforall{}[x,y,z:Point].    (x  (y  z))  \mequiv{}  ((x  y)  z)



Date html generated: 2016_11_08-AM-09_11_36
Last ObjectModification: 2016_11_02-PM-07_01_45

Theory : inner!product!spaces


Home Index