Nuprl Lemma : real-interval-lattice_wf

[I:Interval]. (real-interval-lattice(I) ∈ DistributiveLattice)


Proof




Definitions occuring in Statement :  real-interval-lattice: real-interval-lattice(I) distributive-lattice: DistributiveLattice interval: Interval uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-interval-lattice: real-interval-lattice(I) prop: so_lambda: λ2y.t[x; y] all: x:A. B[x] implies:  Q so_apply: x[s1;s2] uimplies: supposing a and: P ∧ Q cand: c∧ B rmin: rmin(x;y) squash: T real: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) so_lambda: λ2x.t[x] so_apply: x[s] rmax: rmax(x;y)
Lemmas referenced :  mk-distributive-lattice_wf real_wf i-member_wf rmin_wf rmin-i-member rmax_wf rmax-i-member implies-equal-real equal_wf imin_com imin_wf iff_weakening_equal nat_plus_wf sq_stable__i-member set_wf imax_com imax_wf imin_assoc imax_assoc rmax-rmin-absorption-strong rmin-rmax-absorption-strong rmin-rmax-distrib-strong interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis hypothesisEquality lambdaEquality lambdaFormation setElimination rename dependent_set_memberEquality dependent_functionElimination because_Cache independent_functionElimination independent_isectElimination applyEquality imageElimination intEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination isect_memberEquality axiomEquality independent_pairFormation

Latex:
\mforall{}[I:Interval].  (real-interval-lattice(I)  \mmember{}  DistributiveLattice)



Date html generated: 2017_10_05-AM-00_43_17
Last ObjectModification: 2017_07_28-AM-09_17_55

Theory : lattices


Home Index