Nuprl Lemma : real-interval-lattice_wf
∀[I:Interval]. (real-interval-lattice(I) ∈ DistributiveLattice)
Proof
Definitions occuring in Statement : 
real-interval-lattice: real-interval-lattice(I)
, 
distributive-lattice: DistributiveLattice
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-interval-lattice: real-interval-lattice(I)
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
rmin: rmin(x;y)
, 
squash: ↓T
, 
real: ℝ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rmax: rmax(x;y)
Lemmas referenced : 
mk-distributive-lattice_wf, 
real_wf, 
i-member_wf, 
rmin_wf, 
rmin-i-member, 
rmax_wf, 
rmax-i-member, 
implies-equal-real, 
equal_wf, 
imin_com, 
imin_wf, 
iff_weakening_equal, 
nat_plus_wf, 
sq_stable__i-member, 
set_wf, 
imax_com, 
imax_wf, 
imin_assoc, 
imax_assoc, 
rmax-rmin-absorption-strong, 
rmin-rmax-absorption-strong, 
rmin-rmax-distrib-strong, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
intEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation
Latex:
\mforall{}[I:Interval].  (real-interval-lattice(I)  \mmember{}  DistributiveLattice)
Date html generated:
2017_10_05-AM-00_43_17
Last ObjectModification:
2017_07_28-AM-09_17_55
Theory : lattices
Home
Index