Nuprl Lemma : bfs-reduce-subtype1

[K:RngSig]. ∀[S,T:Type].
  ∀[as,bs:basic-formal-sum(K;S)].  (bfs-reduce(K;S;as;bs)  bfs-reduce(K;T;as;bs)) supposing S ⊆T


Proof




Definitions occuring in Statement :  bfs-reduce: bfs-reduce(K;S;as;bs) basic-formal-sum: basic-formal-sum(K;S) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q universe: Type rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B implies:  Q bfs-reduce: bfs-reduce(K;S;as;bs) or: P ∨ Q exists: x:A. B[x] basic-formal-sum: basic-formal-sum(K;S) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] and: P ∧ Q infix_ap: y cand: c∧ B prop:
Lemmas referenced :  subtype_rel_bag basic-formal-sum-subtype respects-equality-bag rng_car_wf respects-equality-product respects-equality-trivial subtype-respects-equality istype-base change-equality-type basic-formal-sum_wf bag-append_wf subtype_rel_product zero-bfs_wf subtype_rel_self bag_wf formal-sum-mul_wf1 rng_plus_wf bfs-reduce_wf subtype_rel_wf istype-universe rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction sqequalRule axiomEquality hypothesis thin rename lambdaFormation_alt sqequalHypSubstitution unionElimination inlFormation_alt productElimination dependent_pairFormation_alt hypothesisEquality applyEquality extract_by_obid isectElimination independent_isectElimination productEquality because_Cache lambdaEquality_alt universeIsType independent_functionElimination inhabitedIsType equalityIstype sqequalBase equalitySymmetry dependent_functionElimination equalityTransitivity productIsType inrFormation_alt independent_pairFormation promote_hyp instantiate universeEquality

Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[as,bs:basic-formal-sum(K;S)].    (bfs-reduce(K;S;as;bs)  {}\mRightarrow{}  bfs-reduce(K;T;as;bs)) 
    supposing  S  \msubseteq{}r  T



Date html generated: 2019_10_31-AM-06_28_30
Last ObjectModification: 2019_08_15-PM-02_20_27

Theory : linear!algebra


Home Index