Nuprl Lemma : bfs-reduce-subtype1
∀[K:RngSig]. ∀[S,T:Type].
  ∀[as,bs:basic-formal-sum(K;S)].  (bfs-reduce(K;S;as;bs) 
⇒ bfs-reduce(K;T;as;bs)) supposing S ⊆r T
Proof
Definitions occuring in Statement : 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
infix_ap: x f y
, 
cand: A c∧ B
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_bag, 
basic-formal-sum-subtype, 
respects-equality-bag, 
rng_car_wf, 
respects-equality-product, 
respects-equality-trivial, 
subtype-respects-equality, 
istype-base, 
change-equality-type, 
basic-formal-sum_wf, 
bag-append_wf, 
subtype_rel_product, 
zero-bfs_wf, 
subtype_rel_self, 
bag_wf, 
formal-sum-mul_wf1, 
rng_plus_wf, 
bfs-reduce_wf, 
subtype_rel_wf, 
istype-universe, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
unionElimination, 
inlFormation_alt, 
productElimination, 
dependent_pairFormation_alt, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
productEquality, 
because_Cache, 
lambdaEquality_alt, 
universeIsType, 
independent_functionElimination, 
inhabitedIsType, 
equalityIstype, 
sqequalBase, 
equalitySymmetry, 
dependent_functionElimination, 
equalityTransitivity, 
productIsType, 
inrFormation_alt, 
independent_pairFormation, 
promote_hyp, 
instantiate, 
universeEquality
Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[as,bs:basic-formal-sum(K;S)].    (bfs-reduce(K;S;as;bs)  {}\mRightarrow{}  bfs-reduce(K;T;as;bs)) 
    supposing  S  \msubseteq{}r  T
Date html generated:
2019_10_31-AM-06_28_30
Last ObjectModification:
2019_08_15-PM-02_20_27
Theory : linear!algebra
Home
Index