Nuprl Lemma : free-1-normal-form
∀[S:Type]
  ∀s:S. ∀x:Point(free-vs(ℤ-rng;S)).  ∃k:ℤ. (x = {<k, s>} ∈ Point(free-vs(ℤ-rng;S))) supposing ∀x,y:S.  (x = y ∈ S)
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
pair: <a, b>
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
, 
int_ring: ℤ-rng
, 
single-bag: {x}
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
integ_dom: IntegDom{i}
, 
crng: CRng
, 
rng: Rng
, 
vs-iso: A ≅ B
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
vs-map: A ⟶ B
, 
prop: ℙ
, 
so_apply: x[s]
, 
top: Top
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
free-iso-int: free-iso-int(s)
, 
implies: P 
⇒ Q
, 
vs-point: Point(vs)
, 
record-select: r.x
, 
int-vs: ℤ
, 
mk-vs: mk-vs, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
rng_car: |r|
, 
int_ring: ℤ-rng
, 
free-vs: free-vs(K;S)
, 
formal-sum: formal-sum(K;S)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
free-iso-int_wf, 
vs-point_wf, 
int_ring_wf, 
free-vs_wf, 
istype-universe, 
pi2_wf, 
vs-map_wf, 
int-vs_wf, 
equal_wf, 
pi1_wf_top, 
istype-void, 
subtype_rel_self, 
single-bag_wf, 
basic-formal-sum_wf, 
rec_select_update_lemma, 
formal-sum_wf, 
subtype_quotient, 
bfs-equiv_wf, 
bfs-equiv-rel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
lambdaFormation_alt, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
universeIsType, 
applyEquality, 
setElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
functionIsType, 
equalityIstype, 
instantiate, 
universeEquality, 
applyLambdaEquality, 
productEquality, 
functionEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_pairFormation_alt, 
intEquality, 
independent_functionElimination
Latex:
\mforall{}[S:Type].  \mforall{}s:S.  \mforall{}x:Point(free-vs(\mBbbZ{}-rng;S)).    \mexists{}k:\mBbbZ{}.  (x  =  \{<k,  s>\})  supposing  \mforall{}x,y:S.    (x  =  y)
Date html generated:
2019_10_31-AM-06_31_14
Last ObjectModification:
2019_08_15-AM-11_15_58
Theory : linear!algebra
Home
Index