Nuprl Lemma : free-1-normal-form

[S:Type]
  ∀s:S. ∀x:Point(free-vs(ℤ-rng;S)).  ∃k:ℤ(x {<k, s>} ∈ Point(free-vs(ℤ-rng;S))) supposing ∀x,y:S.  (x y ∈ S)


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] pair: <a, b> int: universe: Type equal: t ∈ T int_ring: -rng single-bag: {x}
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B integ_dom: IntegDom{i} crng: CRng rng: Rng vs-iso: A ≅ B exists: x:A. B[x] so_lambda: λ2x.t[x] and: P ∧ Q vs-map: A ⟶ B prop: so_apply: x[s] top: Top pi2: snd(t) pi1: fst(t) free-iso-int: free-iso-int(s) implies:  Q vs-point: Point(vs) record-select: r.x int-vs: mk-vs: mk-vs record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bag: bag(T) quotient: x,y:A//B[x; y] basic-formal-sum: basic-formal-sum(K;S) rng_car: |r| int_ring: -rng free-vs: free-vs(K;S) formal-sum: formal-sum(K;S) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  free-iso-int_wf vs-point_wf int_ring_wf free-vs_wf istype-universe pi2_wf vs-map_wf int-vs_wf equal_wf pi1_wf_top istype-void subtype_rel_self single-bag_wf basic-formal-sum_wf rec_select_update_lemma formal-sum_wf subtype_quotient bfs-equiv_wf bfs-equiv-rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType rename lambdaFormation_alt extract_by_obid isectElimination independent_isectElimination universeIsType applyEquality setElimination equalityTransitivity equalitySymmetry because_Cache functionIsType equalityIstype instantiate universeEquality applyLambdaEquality productEquality functionEquality productElimination independent_pairEquality isect_memberEquality_alt voidElimination dependent_pairFormation_alt intEquality independent_functionElimination

Latex:
\mforall{}[S:Type].  \mforall{}s:S.  \mforall{}x:Point(free-vs(\mBbbZ{}-rng;S)).    \mexists{}k:\mBbbZ{}.  (x  =  \{<k,  s>\})  supposing  \mforall{}x,y:S.    (x  =  y)



Date html generated: 2019_10_31-AM-06_31_14
Last ObjectModification: 2019_08_15-AM-11_15_58

Theory : linear!algebra


Home Index