Nuprl Lemma : free-iso-int_wf

[S:Type]. ∀[s:S].  free-iso-int(s) ∈ free-vs(ℤ-rng;S) ≅ ℤ supposing ∀x,y:S.  (x y ∈ S)


Proof




Definitions occuring in Statement :  free-iso-int: free-iso-int(s) free-vs: free-vs(K;S) vs-iso: A ≅ B int-vs: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type equal: t ∈ T int_ring: -rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B integ_dom: IntegDom{i} all: x:A. B[x] free-1-iso: free-1-iso(s;K) vs-iso: A ≅ B int_ring: -rng rng_zero: 0 pi2: snd(t) pi1: fst(t) rng_plus: +r rng_one: 1 rng_times: * infix_ap: y exists: x:A. B[x] free-iso-int: free-iso-int(s) crng: CRng rng: Rng so_lambda: λ2x.t[x] and: P ∧ Q vs-map: A ⟶ B prop: so_apply: x[s] top: Top free-vs: free-vs(K;S) vs-point: Point(vs) mk-vs: mk-vs eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt formal-sum: formal-sum(K;S) quotient: x,y:A//B[x; y] squash: T cand: c∧ B guard: {T} basic-formal-sum: basic-formal-sum(K;S) rng_car: |r| sq_type: SQType(T) implies:  Q one-dim-vs: one-dim-vs(K) vs-mul: x decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False assoc: Assoc(T;op) comm: Comm(T;op) record-select: r.x record-update: r[x := v] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int-vs:
Lemmas referenced :  free-1-iso_wf int_ring_wf istype-universe one-dim-int-vs pi2_wf vs-map_wf free-vs_wf int-vs_wf vs-point_wf equal_wf pi1_wf_top istype-void vs-map-eq rec_select_update_lemma basic-formal-sum_wf bfs-equiv_wf subtype_base_sq int_subtype_base bag-summation_wf top_wf istype-int istype-top subtype_rel_bag subtype_rel_product decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf itermAdd_wf int_term_value_add_lemma subtype_rel_self equal_functionality_wrt_subtype_rel2 quotient_wf bfs-equiv-rel mul-one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule independent_isectElimination axiomEquality functionIsType because_Cache equalityIstype isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate universeEquality applyLambdaEquality productEquality functionEquality productElimination independent_pairEquality voidElimination dependent_pairEquality_alt productIsType functionExtensionality dependent_functionElimination pointwiseFunctionalityForEquality pertypeElimination promote_hyp sqequalBase cumulativity intEquality imageElimination independent_pairFormation addEquality natural_numberEquality lambdaFormation_alt imageMemberEquality baseClosed independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality

Latex:
\mforall{}[S:Type].  \mforall{}[s:S].    free-iso-int(s)  \mmember{}  free-vs(\mBbbZ{}-rng;S)  \mcong{}  \mBbbZ{}  supposing  \mforall{}x,y:S.    (x  =  y)



Date html generated: 2019_10_31-AM-06_31_09
Last ObjectModification: 2019_08_02-PM-05_30_16

Theory : linear!algebra


Home Index