Nuprl Lemma : free-iso-int_wf
∀[S:Type]. ∀[s:S].  free-iso-int(s) ∈ free-vs(ℤ-rng;S) ≅ ℤ supposing ∀x,y:S.  (x = y ∈ S)
Proof
Definitions occuring in Statement : 
free-iso-int: free-iso-int(s)
, 
free-vs: free-vs(K;S)
, 
vs-iso: A ≅ B
, 
int-vs: ℤ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
equal: s = t ∈ T
, 
int_ring: ℤ-rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
integ_dom: IntegDom{i}
, 
all: ∀x:A. B[x]
, 
free-1-iso: free-1-iso(s;K)
, 
vs-iso: A ≅ B
, 
int_ring: ℤ-rng
, 
rng_zero: 0
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
rng_plus: +r
, 
rng_one: 1
, 
rng_times: *
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
free-iso-int: free-iso-int(s)
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
vs-map: A ⟶ B
, 
prop: ℙ
, 
so_apply: x[s]
, 
top: Top
, 
free-vs: free-vs(K;S)
, 
vs-point: Point(vs)
, 
mk-vs: mk-vs, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
formal-sum: formal-sum(K;S)
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
cand: A c∧ B
, 
guard: {T}
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
rng_car: |r|
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
one-dim-vs: one-dim-vs(K)
, 
vs-mul: a * x
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
assoc: Assoc(T;op)
, 
comm: Comm(T;op)
, 
record-select: r.x
, 
record-update: r[x := v]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
int-vs: ℤ
Lemmas referenced : 
free-1-iso_wf, 
int_ring_wf, 
istype-universe, 
one-dim-int-vs, 
pi2_wf, 
vs-map_wf, 
free-vs_wf, 
int-vs_wf, 
vs-point_wf, 
equal_wf, 
pi1_wf_top, 
istype-void, 
vs-map-eq, 
rec_select_update_lemma, 
basic-formal-sum_wf, 
bfs-equiv_wf, 
subtype_base_sq, 
int_subtype_base, 
bag-summation_wf, 
top_wf, 
istype-int, 
istype-top, 
subtype_rel_bag, 
subtype_rel_product, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_rel_self, 
equal_functionality_wrt_subtype_rel2, 
quotient_wf, 
bfs-equiv-rel, 
mul-one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
independent_isectElimination, 
axiomEquality, 
functionIsType, 
because_Cache, 
equalityIstype, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
universeEquality, 
applyLambdaEquality, 
productEquality, 
functionEquality, 
productElimination, 
independent_pairEquality, 
voidElimination, 
dependent_pairEquality_alt, 
productIsType, 
functionExtensionality, 
dependent_functionElimination, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
sqequalBase, 
cumulativity, 
intEquality, 
imageElimination, 
independent_pairFormation, 
addEquality, 
natural_numberEquality, 
lambdaFormation_alt, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality
Latex:
\mforall{}[S:Type].  \mforall{}[s:S].    free-iso-int(s)  \mmember{}  free-vs(\mBbbZ{}-rng;S)  \mcong{}  \mBbbZ{}  supposing  \mforall{}x,y:S.    (x  =  y)
Date html generated:
2019_10_31-AM-06_31_09
Last ObjectModification:
2019_08_02-PM-05_30_16
Theory : linear!algebra
Home
Index