Nuprl Lemma : fs-in-subtype-basic
∀[K:RngSig]. ∀[S,T:Type].
  ∀[f:formal-sum(K;S)]. ↓∃b:basic-formal-sum(K;T). (f = b ∈ formal-sum(K;S)) supposing fs-in-subtype(K;S;T;f) 
  supposing strong-subtype(T;S)
Proof
Definitions occuring in Statement : 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
formal-sum: formal-sum(K;S)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
fs-predicate: fs-predicate(K;S;p.P[p];f)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
bfs-predicate: bfs-predicate(K;S;p.P[p];b)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
formal-sum: formal-sum(K;S)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
respects-equality: respects-equality(S;T)
, 
guard: {T}
, 
pi2: snd(t)
, 
true: True
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
bag-in-subtype, 
rng_car_wf, 
strong-subtype-product, 
strong-subtype-self, 
bag-member_wf, 
respects-equality-quotient1, 
basic-formal-sum_wf, 
bfs-equiv_wf, 
bfs-equiv-rel, 
respects-equality-bag, 
respects-equality-product, 
respects-equality-trivial, 
subtype-respects-equality, 
istype-base, 
fs-in-subtype_wf, 
formal-sum_wf, 
strong-subtype_wf, 
istype-universe, 
rng_sig_wf, 
trivial-equal, 
member_wf, 
squash_wf, 
true_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
productEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
lambdaFormation_alt, 
independent_pairEquality, 
universeIsType, 
productIsType, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
inhabitedIsType, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalBase, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
hyp_replacement, 
applyEquality, 
natural_numberEquality
Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[f:formal-sum(K;S)].  \mdownarrow{}\mexists{}b:basic-formal-sum(K;T).  (f  =  b)  supposing  fs-in-subtype(K;S;T;f) 
    supposing  strong-subtype(T;S)
Date html generated:
2019_10_31-AM-06_29_14
Last ObjectModification:
2019_08_20-PM-05_07_53
Theory : linear!algebra
Home
Index