Nuprl Lemma : generated-subspace-contains

K:Rng. ∀vs:VectorSpace(K).  ∀[P:Point(vs) ⟶ ℙ]. ∀v:Point(vs). (P[v]  (Subspace(x.P[x]) v))


Proof




Definitions occuring in Statement :  generated-subspace: Subspace(v.P[v]) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q generated-subspace: Subspace(v.P[v]) guard: {T} or: P ∨ Q member: t ∈ T prop: rng: Rng so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] top: Top vs-tree-val: vs-tree-val(vs;t) l_tree_node: l_tree_node(val;left_subtree;right_subtree) l_tree_ind: l_tree_ind pi1: fst(t) l_tree_leaf: l_tree_leaf(val) true: True squash: T and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf vs-point_wf vs-0_wf vector-space_wf rng_wf l_tree_node_wf subtype_rel_self rng_car_wf rng_one_wf l_tree_leaf_wf rng_zero_wf vs-tree-val_wf l_tree_covariant top_wf subtype_rel_product vs-add_wf vs-mul-zero vs-mul_wf vs-mul-one squash_wf true_wf rng_sig_wf vs-mon_ident iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalRule cut hypothesis inrFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesisEquality applyEquality functionEquality cumulativity universeEquality dependent_functionElimination dependent_pairFormation productEquality instantiate dependent_pairEquality independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry independent_functionElimination hyp_replacement applyLambdaEquality equalityUniverse levelHypothesis natural_numberEquality imageElimination productElimination imageMemberEquality baseClosed

Latex:
\mforall{}K:Rng.  \mforall{}vs:VectorSpace(K).    \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}v:Point(vs).  (P[v]  {}\mRightarrow{}  (Subspace(x.P[x])  v))



Date html generated: 2018_05_22-PM-09_42_20
Last ObjectModification: 2018_05_20-PM-10_42_13

Theory : linear!algebra


Home Index