Nuprl Lemma : generated-subspace-is-least

K:Rng. ∀vs:VectorSpace(K).
  ∀[P:Point(vs) ⟶ ℙ]
    ∀S:Point(vs) ⟶ ℙ
      (vs-subspace(K;vs;w.S[w])  (∀v:Point(vs). (P[v]  S[v]))  (∀v:Point(vs). ((Subspace(x.P[x]) v)  S[v])))


Proof




Definitions occuring in Statement :  generated-subspace: Subspace(v.P[v]) vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q generated-subspace: Subspace(v.P[v]) or: P ∨ Q so_apply: x[s] member: t ∈ T subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] rng: Rng so_lambda: λ2x.t[x] vs-subspace: vs-subspace(K;vs;x.P[x]) top: Top vs-tree-val: vs-tree-val(vs;t) l_tree_leaf: l_tree_leaf(val) l_tree_ind: l_tree_ind l_tree_node: l_tree_node(val;left_subtree;right_subtree) pi1: fst(t)
Lemmas referenced :  subtype_rel_self iff_weakening_equal generated-subspace_wf vs-point_wf all_wf vs-subspace_wf vector-space_wf rng_wf l_tree-induction rng_car_wf vs-tree-val_wf l_tree_covariant top_wf subtype_rel_product l_tree_wf vs-add_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution unionElimination thin cut applyEquality hypothesisEquality hypothesis sqequalRule instantiate introduction extract_by_obid isectElimination universeEquality equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination because_Cache setElimination rename lambdaEquality functionEquality cumulativity dependent_functionElimination productEquality functionExtensionality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}K:Rng.  \mforall{}vs:VectorSpace(K).
    \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}]
        \mforall{}S:Point(vs)  {}\mrightarrow{}  \mBbbP{}
            (vs-subspace(K;vs;w.S[w])
            {}\mRightarrow{}  (\mforall{}v:Point(vs).  (P[v]  {}\mRightarrow{}  S[v]))
            {}\mRightarrow{}  (\mforall{}v:Point(vs).  ((Subspace(x.P[x])  v)  {}\mRightarrow{}  S[v])))



Date html generated: 2018_05_22-PM-09_42_24
Last ObjectModification: 2018_05_20-PM-10_42_43

Theory : linear!algebra


Home Index