Nuprl Lemma : generated-subspace-is-least
∀K:Rng. ∀vs:VectorSpace(K).
  ∀[P:Point(vs) ⟶ ℙ]
    ∀S:Point(vs) ⟶ ℙ
      (vs-subspace(K;vs;w.S[w]) 
⇒ (∀v:Point(vs). (P[v] 
⇒ S[v])) 
⇒ (∀v:Point(vs). ((Subspace(x.P[x]) v) 
⇒ S[v])))
Proof
Definitions occuring in Statement : 
generated-subspace: Subspace(v.P[v])
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
rng: Rng
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
generated-subspace: Subspace(v.P[v])
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
top: Top
, 
vs-tree-val: vs-tree-val(vs;t)
, 
l_tree_leaf: l_tree_leaf(val)
, 
l_tree_ind: l_tree_ind, 
l_tree_node: l_tree_node(val;left_subtree;right_subtree)
, 
pi1: fst(t)
Lemmas referenced : 
subtype_rel_self, 
iff_weakening_equal, 
generated-subspace_wf, 
vs-point_wf, 
all_wf, 
vs-subspace_wf, 
vector-space_wf, 
rng_wf, 
l_tree-induction, 
rng_car_wf, 
vs-tree-val_wf, 
l_tree_covariant, 
top_wf, 
subtype_rel_product, 
l_tree_wf, 
vs-add_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
cut, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
setElimination, 
rename, 
lambdaEquality, 
functionEquality, 
cumulativity, 
dependent_functionElimination, 
productEquality, 
functionExtensionality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}K:Rng.  \mforall{}vs:VectorSpace(K).
    \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}]
        \mforall{}S:Point(vs)  {}\mrightarrow{}  \mBbbP{}
            (vs-subspace(K;vs;w.S[w])
            {}\mRightarrow{}  (\mforall{}v:Point(vs).  (P[v]  {}\mRightarrow{}  S[v]))
            {}\mRightarrow{}  (\mforall{}v:Point(vs).  ((Subspace(x.P[x])  v)  {}\mRightarrow{}  S[v])))
Date html generated:
2018_05_22-PM-09_42_24
Last ObjectModification:
2018_05_20-PM-10_42_43
Theory : linear!algebra
Home
Index