Nuprl Lemma : presheaf-fun-eta

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}]. ∀[w:{X ⊢ _:(A ⟶ B)}].
  (presheaf-lam(X;app((w)p; q)) w ∈ {X ⊢ _:(A ⟶ B)})


Proof




Definitions occuring in Statement :  presheaf-app: app(w; u) presheaf-lam: presheaf-lam(X;b) presheaf-fun: (A ⟶ B) psc-snd: q psc-fst: p pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] presheaf-lam: presheaf-lam(X;b) member: t ∈ T subtype_rel: A ⊆B squash: T prop: true: True
Lemmas referenced :  presheaf-term_wf presheaf-fun_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf squash_wf true_wf presheaf-fun-as-presheaf-pi presheaf-type-cumulativity2 ps_context_cumulativity2 presheaf-eta pscm-ap-type_wf psc-adjoin_wf psc-fst_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache instantiate applyEquality sqequalRule lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].
    (presheaf-lam(X;app((w)p;  q))  =  w)



Date html generated: 2020_05_20-PM-01_33_46
Last ObjectModification: 2020_04_03-AM-01_04_51

Theory : presheaf!models!of!type!theory


Home Index