Nuprl Lemma : presheaf-fun-eta
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}]. ∀[w:{X ⊢ _:(A ⟶ B)}].
  (presheaf-lam(X;app((w)p; q)) = w ∈ {X ⊢ _:(A ⟶ B)})
Proof
Definitions occuring in Statement : 
presheaf-app: app(w; u)
, 
presheaf-lam: presheaf-lam(X;b)
, 
presheaf-fun: (A ⟶ B)
, 
psc-snd: q
, 
psc-fst: p
, 
pscm-ap-term: (t)s
, 
presheaf-term: {X ⊢ _:A}
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
presheaf-lam: presheaf-lam(X;b)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
Lemmas referenced : 
presheaf-term_wf, 
presheaf-fun_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf, 
squash_wf, 
true_wf, 
presheaf-fun-as-presheaf-pi, 
presheaf-type-cumulativity2, 
ps_context_cumulativity2, 
presheaf-eta, 
pscm-ap-type_wf, 
psc-adjoin_wf, 
psc-fst_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
instantiate, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].
    (presheaf-lam(X;app((w)p;  q))  =  w)
Date html generated:
2020_05_20-PM-01_33_46
Last ObjectModification:
2020_04_03-AM-01_04_51
Theory : presheaf!models!of!type!theory
Home
Index