Nuprl Lemma : presheaf-eta

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠB}].
  ((λapp((w)p; q)) w ∈ {X ⊢ _:ΠB})


Proof




Definitions occuring in Statement :  presheaf-app: app(w; u) presheaf-lambda: b) presheaf-pi: ΠB psc-snd: q psc-fst: p psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B psc-snd: q psc-fst: p pscm-ap-term: (t)s presheaf-app: app(w; u) presheaf-lambda: b) presheaf-pi: ΠB pi1: fst(t) pscm-ap: (s)x presheaf-term: {X ⊢ _:A} all: x:A. B[x] presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) squash: T uimplies: supposing a true: True prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q psc-adjoin-set: (v;u) pi2: snd(t) presheaf-type-at: A(a)
Lemmas referenced :  presheaf-term_wf presheaf-pi_wf presheaf-type_wf psc-adjoin_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 ps_context_wf small-category_wf presheaf_type_at_pair_lemma I_set_wf cat-ob_wf presheaf-type-at_wf psc-restriction_wf cat-arrow_wf psc-adjoin-set_wf presheaf-type-ap-morph_wf cat-comp_wf subtype_rel-equal psc-restriction-comp psc-adjoin-set-restriction equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal presheaf_type_ap_morph_pair_lemma cat-id_wf psc-restriction-id cat-comp-ident1 presheaf-term-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality functionExtensionality_alt setElimination rename dependent_functionElimination Error :memTop,  applyLambdaEquality imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt functionIsType because_Cache equalityIstype independent_isectElimination lambdaEquality_alt natural_numberEquality equalityTransitivity universeEquality productElimination independent_functionElimination hyp_replacement functionExtensionality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].
    ((\mlambda{}app((w)p;  q))  =  w)



Date html generated: 2020_05_20-PM-01_33_42
Last ObjectModification: 2020_04_02-PM-06_32_30

Theory : presheaf!models!of!type!theory


Home Index