Nuprl Lemma : ps-context-map-comp2

[C:SmallCategory]. ∀[G:ps_context{j:l}(C)]. ∀[I,J:cat-ob(C)]. ∀[f:cat-arrow(C) I]. ∀[a:G(I)].
  (<a> o <f> = <f(a)> ∈ psc_map{[i j]:l}(C; Yoneda(J); G))


Proof




Definitions occuring in Statement :  pscm-comp: F ps-context-map: <rho> psc_map: A ⟶ B Yoneda: Yoneda(I) psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] apply: a equal: t ∈ T cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] cat-arrow: cat-arrow(C) pi1: fst(t) pi2: snd(t) I_set: A(I) functor-ob: ob(F) Yoneda: Yoneda(I) uimplies: supposing a psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) type-cat: TypeCat pscm-comp: F compose: g ps-context-map: <rho> functor-arrow: arrow(F) psc-restriction: f(s)
Lemmas referenced :  pscm-equal Yoneda_wf small-category-cumulativity-2 ps_context_cumulativity2 pscm-comp_wf ps-context-map_wf subtype_rel_self I_set_wf cat-arrow_wf cat-ob_wf ps_context_wf small-category_wf psc-restriction_wf subtype_rel-equal op-cat_wf cat_ob_op_lemma psc-restriction-comp arrow_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache dependent_functionElimination functionExtensionality independent_isectElimination universeIsType lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry functionEquality cumulativity Error :memTop

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[G:ps\_context\{j:l\}(C)].  \mforall{}[I,J:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  J  I].  \mforall{}[a:G(I)].
    (<a>  o  <f>  =  <f(a)>)



Date html generated: 2020_05_20-PM-01_27_04
Last ObjectModification: 2020_04_03-PM-00_28_31

Theory : presheaf!models!of!type!theory


Home Index