Nuprl Lemma : classical-exists-n-implies-approx

I:{I:Interval| icompact(I)} . ∀n:ℕ. ∀f:{f:I^n ⟶ ℝ| ∀a,b:I^n.  (req-vec(n;a;b)  ((f a) (f b)))} .
  ((¬¬(∃x:I^n. ((f x) r0)))  (∀e:{e:ℝr0 < e} . ∃x:I^n. (|f x| < e)))


Proof




Definitions occuring in Statement :  interval-vec: I^n req-vec: req-vec(n;x;y) icompact: icompact(I) interval: Interval rless: x < y rabs: |x| req: y int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: not: ¬A exists: x:A. B[x] false: False interval-vec: I^n uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  approx-zero real_wf rless_wf int-to-real_wf interval-vec_wf req_wf istype-void req-vec_wf istype-nat interval_wf icompact_wf rneq_wf rneq_irrefl rneq_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis setIsType universeIsType isectElimination natural_numberEquality sqequalRule functionIsType productIsType setElimination rename applyEquality because_Cache productElimination voidElimination independent_isectElimination

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}n:\mBbbN{}.  \mforall{}f:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}|  \mforall{}a,b:I\^{}n.    (req-vec(n;a;b)  {}\mRightarrow{}  ((f  a)  =  (f  b)))\}\000C  .
    ((\mneg{}\mneg{}(\mexists{}x:I\^{}n.  ((f  x)  =  r0)))  {}\mRightarrow{}  (\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .  \mexists{}x:I\^{}n.  (|f  x|  <  e)))



Date html generated: 2019_10_30-AM-08_27_14
Last ObjectModification: 2019_05_29-AM-09_12_17

Theory : reals


Home Index