Nuprl Lemma : compact-metric-to-int-bounded

[X:Type]. ∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀mtb:m-TB(X;d). ∀f:X ⟶ ℤ.  ∃B:ℕ. ∀x:X. ∃y:X. (x ≡ y ∧ (|f y| ≤ B))


Proof




Definitions occuring in Statement :  m-TB: m-TB(X;d) mcomplete: mcomplete(M) mk-metric-space: with d meq: x ≡ y metric: metric(X) absval: |i| nat: uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T m-TB: m-TB(X;d) subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] uimplies: supposing a top: Top mtb-cantor: mtb-cantor(mtb) pi1: fst(t) nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T less_than': less_than'(a;b) exists: x:A. B[x] cand: c∧ B prop: guard: {T}
Lemmas referenced :  mtb-cantor-map-onto general-cantor-to-int-bounded pi1_wf_top nat_wf nat_plus_wf subtype_rel_product int_seg_wf istype-nat top_wf istype-void mtb-cantor-map_wf mtb-point-cantor_wf meq_inversion meq_wf istype-le absval_wf istype-int m-TB_wf mcomplete_wf mk-metric-space_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination functionEquality hypothesis setElimination rename applyEquality sqequalRule lambdaEquality_alt productEquality natural_numberEquality universeIsType because_Cache functionIsType independent_isectElimination isect_memberEquality_alt voidElimination productIsType closedConclusion productElimination dependent_pairFormation_alt independent_pairFormation inhabitedIsType equalityTransitivity equalitySymmetry instantiate universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}cmplt:mcomplete(X  with  d).  \mforall{}mtb:m-TB(X;d).  \mforall{}f:X  {}\mrightarrow{}  \mBbbZ{}.
        \mexists{}B:\mBbbN{}.  \mforall{}x:X.  \mexists{}y:X.  (x  \mequiv{}  y  \mwedge{}  (|f  y|  \mleq{}  B))



Date html generated: 2019_10_30-AM-07_10_58
Last ObjectModification: 2019_10_09-AM-11_38_12

Theory : reals


Home Index