Nuprl Lemma : continuous-series-sum

I:Interval. ∀f:ℕ ⟶ I ⟶ℝ. ∀cnv:Σn.f[n;x]↓ for x ∈ I.
  ((∀n:ℕf[n;x] continuous for x ∈ I)  Σn.f[n](y) continuous for y ∈ I)


Proof




Definitions occuring in Statement :  fun-series-sum: Σn.f[n](z) fun-series-converges: Σn.f[n; x]↓ for x ∈ I continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval nat: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q fun-series-converges: Σn.f[n; x]↓ for x ∈ I fun-converges: λn.f[n; x]↓ for x ∈ I) exists: x:A. B[x] fun-series-sum: Σn.f[n](z) pi1: fst(t) member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2y.t[x; y] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  all_wf nat_wf continuous_wf rfun_wf real_wf i-member_wf fun-series-converges_wf interval_wf fun-converges-to-continuous rsum_wf int_seg_subtype_nat false_wf int_seg_wf continuous-sum
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut lemma_by_obid isectElimination hypothesis lambdaEquality hypothesisEquality applyEquality setEquality because_Cache functionEquality natural_numberEquality setElimination rename addEquality independent_isectElimination independent_pairFormation independent_functionElimination dependent_functionElimination

Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}cnv:\mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I.
    ((\mforall{}n:\mBbbN{}.  f[n;x]  continuous  for  x  \mmember{}  I)  {}\mRightarrow{}  \mSigma{}n.f[n](y)  continuous  for  y  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_55_53
Last ObjectModification: 2015_12_27-PM-11_07_52

Theory : reals


Home Index