Nuprl Lemma : imonomial-term-linear-req
∀f:ℤ ⟶ ℝ. ∀ws:ℤ List. ∀c:ℤ. (real_term_value(f;imonomial-term(<c, ws>)) = (r(c) * real_term_value(f;imonomial-term(<1,\000C ws>))))
Proof
Definitions occuring in Statement :
real_term_value: real_term_value(f;t)
,
req: x = y
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
imonomial-term: imonomial-term(m)
,
list: T List
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
pair: <a, b>
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
imonomial-term: imonomial-term(m)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
real_term_value: real_term_value(f;t)
,
itermConstant: "const"
,
int_term_ind: int_term_ind,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
list_wf,
real_wf,
real_term_value_wf,
list_accum_wf,
int_term_wf,
itermConstant_wf,
itermMultiply_wf,
itermVar_wf,
rmul_wf,
int-to-real_wf,
req_weakening,
req_functionality,
imonomial-req-lemma,
rmul_functionality
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
sqequalRule,
intEquality,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
functionEquality,
functionExtensionality,
applyEquality,
hypothesisEquality,
lambdaEquality,
natural_numberEquality,
because_Cache,
independent_isectElimination,
dependent_functionElimination,
productElimination
Latex:
\mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbR{}. \mforall{}ws:\mBbbZ{} List. \mforall{}c:\mBbbZ{}. (real\_term\_value(f;imonomial-term(<c, ws>)) = (r(c) * real\_term\_value(\000Cf;imonomial-term(ə, ws>))))
Date html generated:
2017_10_02-PM-07_19_03
Last ObjectModification:
2017_04_03-AM-10_50_11
Theory : reals
Home
Index