Nuprl Lemma : iproper-length-iff
∀I:Interval. (i-finite(I) 
⇒ (r0 < |I| 
⇐⇒ iproper(I)))
Proof
Definitions occuring in Statement : 
i-length: |I|
, 
iproper: iproper(I)
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
rless: x < y
, 
int-to-real: r(n)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
iproper: iproper(I)
, 
i-length: |I|
, 
rsub: x - y
, 
cand: A c∧ B
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
i-length_wf, 
iproper_wf, 
i-finite_wf, 
interval_wf, 
radd-preserves-rless, 
rsub_wf, 
right-endpoint_wf, 
left-endpoint_wf, 
radd_wf, 
rminus_wf, 
rless_functionality, 
radd_comm, 
radd_functionality, 
req_weakening, 
radd-rminus-assoc, 
radd-zero-both, 
iproper-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
promote_hyp
Latex:
\mforall{}I:Interval.  (i-finite(I)  {}\mRightarrow{}  (r0  <  |I|  \mLeftarrow{}{}\mRightarrow{}  iproper(I)))
Date html generated:
2016_10_26-AM-09_28_50
Last ObjectModification:
2016_08_16-AM-10_58_03
Theory : reals
Home
Index