Nuprl Lemma : iproper-length-iff

I:Interval. (i-finite(I)  (r0 < |I| ⇐⇒ iproper(I)))


Proof




Definitions occuring in Statement :  i-length: |I| iproper: iproper(I) i-finite: i-finite(I) interval: Interval rless: x < y int-to-real: r(n) all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a rev_implies:  Q iproper: iproper(I) i-length: |I| rsub: y cand: c∧ B
Lemmas referenced :  rless_wf int-to-real_wf i-length_wf iproper_wf i-finite_wf interval_wf radd-preserves-rless rsub_wf right-endpoint_wf left-endpoint_wf radd_wf rminus_wf rless_functionality radd_comm radd_functionality req_weakening radd-rminus-assoc radd-zero-both iproper-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality independent_isectElimination dependent_functionElimination productElimination independent_functionElimination sqequalRule promote_hyp

Latex:
\mforall{}I:Interval.  (i-finite(I)  {}\mRightarrow{}  (r0  <  |I|  \mLeftarrow{}{}\mRightarrow{}  iproper(I)))



Date html generated: 2016_10_26-AM-09_28_50
Last ObjectModification: 2016_08_16-AM-10_58_03

Theory : reals


Home Index