Nuprl Lemma : mfun-class-strong-subtype

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[A:Type].
  strong-subtype(mfun-class(X;d;A;d');mfun-class(X;d;Y;d')) supposing metric-subspace(Y;d';A)


Proof




Definitions occuring in Statement :  mfun-class: mfun-class(X;dx;Y;dy) metric-subspace: metric-subspace(X;d;A) metric: metric(X) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a strong-subtype: strong-subtype(A;B) member: t ∈ T metric-subspace: metric-subspace(X;d;A) and: P ∧ Q subtype_rel: A ⊆B cand: c∧ B sq_stable: SqStable(P) implies:  Q mfun-class: mfun-class(X;dx;Y;dy) quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] mfun: FUN(X ⟶ Y) so_apply: x[s1;s2] all: x:A. B[x] guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] prop: squash: T exists: x:A. B[x] is-mfun: f:FUN(X;Y) meqfun: meqfun(d;A;f;g) equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  sq_stable__subtype_rel mfun-class_wf metric-on-subtype quotient-member-eq mfun_wf meqfun_wf meqfun-equiv-rel-mfun mfun-subtype subtype_rel_set is-mfun_wf subtype_rel_dep_function equal_wf metric-subspace_wf metric_wf istype-universe meqfun-equiv-rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination applyEquality independent_isectElimination hypothesis sqequalRule independent_functionElimination lambdaEquality_alt pointwiseFunctionalityForEquality pertypeElimination promote_hyp setElimination rename inhabitedIsType universeIsType dependent_functionElimination equalityTransitivity equalitySymmetry because_Cache productIsType equalityIstype sqequalBase functionEquality functionIsType lambdaFormation_alt imageMemberEquality baseClosed imageElimination independent_pairFormation setEquality productEquality setIsType instantiate universeEquality functionExtensionality applyLambdaEquality dependent_set_memberEquality_alt

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[A:Type].
    strong-subtype(mfun-class(X;d;A;d');mfun-class(X;d;Y;d'))  supposing  metric-subspace(Y;d';A)



Date html generated: 2019_10_30-AM-06_33_29
Last ObjectModification: 2019_10_02-AM-10_07_11

Theory : reals


Home Index