Nuprl Lemma : prod2-metric-meq
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[p,q:X × Y].  uiff(p ≡ q;fst(p) ≡ fst(q) ∧ snd(p) ≡ snd(q))
Proof
Definitions occuring in Statement : 
prod2-metric: prod2-metric(dX;dY)
, 
meq: x ≡ y
, 
metric: metric(X)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
meq: x ≡ y
, 
metric: metric(X)
, 
prod2-metric: prod2-metric(dX;dY)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
mdist: mdist(d;x;y)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
Lemmas referenced : 
sq_stable__uiff, 
meq_wf, 
prod2-metric_wf, 
pi1_wf_top, 
istype-void, 
pi2_wf, 
sq_stable__meq, 
sq_stable__and, 
req_witness, 
int-to-real_wf, 
mdist_wf, 
req_wf, 
iff_weakening_uiff, 
radd_wf, 
radd-of-nonneg-is-zero, 
mdist-nonneg, 
rleq_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
lambdaEquality_alt, 
universeIsType, 
independent_functionElimination, 
lambdaFormation_alt, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
independent_pairFormation, 
because_Cache, 
productIsType, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
promote_hyp, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
universeEquality
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[p,q:X  \mtimes{}  Y].
    uiff(p  \mequiv{}  q;fst(p)  \mequiv{}  fst(q)  \mwedge{}  snd(p)  \mequiv{}  snd(q))
Date html generated:
2019_10_29-AM-11_10_55
Last ObjectModification:
2019_10_02-AM-09_51_36
Theory : reals
Home
Index