Nuprl Lemma : prod2-metric-meq

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[p,q:X × Y].  uiff(p ≡ q;fst(p) ≡ fst(q) ∧ snd(p) ≡ snd(q))


Proof




Definitions occuring in Statement :  prod2-metric: prod2-metric(dX;dY) meq: x ≡ y metric: metric(X) uiff: uiff(P;Q) uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q top: Top so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q sq_stable: SqStable(P) meq: x ≡ y metric: metric(X) prod2-metric: prod2-metric(dX;dY) pi1: fst(t) pi2: snd(t) mdist: mdist(d;x;y) uiff: uiff(P;Q) uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q squash: T
Lemmas referenced :  sq_stable__uiff meq_wf prod2-metric_wf pi1_wf_top istype-void pi2_wf sq_stable__meq sq_stable__and req_witness int-to-real_wf mdist_wf req_wf iff_weakening_uiff radd_wf radd-of-nonneg-is-zero mdist-nonneg rleq_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis productElimination independent_pairEquality isect_memberEquality_alt voidElimination sqequalRule lambdaEquality_alt universeIsType independent_functionElimination lambdaFormation_alt dependent_functionElimination applyEquality setElimination rename natural_numberEquality functionIsTypeImplies inhabitedIsType independent_pairFormation because_Cache productIsType independent_isectElimination dependent_set_memberEquality_alt promote_hyp imageMemberEquality baseClosed imageElimination instantiate universeEquality

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[p,q:X  \mtimes{}  Y].
    uiff(p  \mequiv{}  q;fst(p)  \mequiv{}  fst(q)  \mwedge{}  snd(p)  \mequiv{}  snd(q))



Date html generated: 2019_10_29-AM-11_10_55
Last ObjectModification: 2019_10_02-AM-09_51_36

Theory : reals


Home Index