Nuprl Lemma : radd-of-nonneg-is-zero
∀[a,b:{x:ℝ| r0 ≤ x} ].  uiff((a + b) = r0;(a = r0) ∧ (b = r0))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
req: x = y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rleq_antisymmetry, 
int-to-real_wf, 
sq_stable__rleq, 
req_witness, 
req_wf, 
radd_wf, 
real_wf, 
rleq_wf, 
radd-zero, 
req_functionality, 
radd_functionality, 
req_weakening, 
radd-preserves-req, 
rminus_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMinus_wf, 
itermVar_wf, 
itermConstant_wf, 
radd-preserves-rleq, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
independent_isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
universeIsType, 
productIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
setIsType, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination
Latex:
\mforall{}[a,b:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].    uiff((a  +  b)  =  r0;(a  =  r0)  \mwedge{}  (b  =  r0))
Date html generated:
2019_10_29-AM-09_35_36
Last ObjectModification:
2019_05_14-PM-03_33_41
Theory : reals
Home
Index