Nuprl Lemma : radd-of-nonneg-is-zero

[a,b:{x:ℝr0 ≤ x} ].  uiff((a b) r0;(a r0) ∧ (b r0))


Proof




Definitions occuring in Statement :  rleq: x ≤ y req: y radd: b int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_stable: SqStable(P) implies:  Q squash: T prop: rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rleq_antisymmetry int-to-real_wf sq_stable__rleq req_witness req_wf radd_wf real_wf rleq_wf radd-zero req_functionality radd_functionality req_weakening radd-preserves-req rminus_wf itermSubtract_wf itermAdd_wf itermMinus_wf itermVar_wf itermConstant_wf radd-preserves-rleq req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality independent_isectElimination hypothesisEquality independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination productElimination independent_pairEquality universeIsType productIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType setIsType dependent_functionElimination approximateComputation lambdaEquality_alt int_eqEquality equalityTransitivity equalitySymmetry voidElimination

Latex:
\mforall{}[a,b:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].    uiff((a  +  b)  =  r0;(a  =  r0)  \mwedge{}  (b  =  r0))



Date html generated: 2019_10_29-AM-09_35_36
Last ObjectModification: 2019_05_14-PM-03_33_41

Theory : reals


Home Index