Nuprl Lemma : radd-of-nonneg-is-zero
∀[a,b:{x:ℝ| r0 ≤ x} ]. uiff((a + b) = r0;(a = r0) ∧ (b = r0))
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
req: x = y
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
squash: ↓T
,
prop: ℙ
,
rev_uimplies: rev_uimplies(P;Q)
,
all: ∀x:A. B[x]
,
req_int_terms: t1 ≡ t2
,
false: False
,
not: ¬A
,
top: Top
Lemmas referenced :
rleq_antisymmetry,
int-to-real_wf,
sq_stable__rleq,
req_witness,
req_wf,
radd_wf,
real_wf,
rleq_wf,
radd-zero,
req_functionality,
radd_functionality,
req_weakening,
radd-preserves-req,
rminus_wf,
itermSubtract_wf,
itermAdd_wf,
itermMinus_wf,
itermVar_wf,
itermConstant_wf,
radd-preserves-rleq,
req-iff-rsub-is-0,
real_polynomial_null,
istype-int,
real_term_value_sub_lemma,
istype-void,
real_term_value_add_lemma,
real_term_value_minus_lemma,
real_term_value_var_lemma,
real_term_value_const_lemma,
rleq_functionality
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
independent_pairFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
because_Cache,
hypothesis,
natural_numberEquality,
independent_isectElimination,
hypothesisEquality,
independent_functionElimination,
sqequalRule,
imageMemberEquality,
baseClosed,
imageElimination,
productElimination,
independent_pairEquality,
universeIsType,
productIsType,
isect_memberEquality_alt,
isectIsTypeImplies,
inhabitedIsType,
setIsType,
dependent_functionElimination,
approximateComputation,
lambdaEquality_alt,
int_eqEquality,
equalityTransitivity,
equalitySymmetry,
voidElimination
Latex:
\mforall{}[a,b:\{x:\mBbbR{}| r0 \mleq{} x\} ]. uiff((a + b) = r0;(a = r0) \mwedge{} (b = r0))
Date html generated:
2019_10_29-AM-09_35_36
Last ObjectModification:
2019_05_14-PM-03_33_41
Theory : reals
Home
Index