Nuprl Lemma : product-discrete
∀A:Type. ∀B:A ⟶ Type.  (discrete-type(A) ⇒ (∀a:A. discrete-type(B[a])) ⇒ discrete-type(a:A × B[a]))
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T), 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
discrete-type: discrete-type(T), 
member: t ∈ T, 
so_apply: x[s], 
uall: ∀[x:A]. B[x], 
top: Top, 
prop: ℙ, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
true: True, 
so_lambda: λ2x.t[x], 
guard: {T}, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
pi1: fst(t)
Lemmas referenced : 
real_wf, 
pi1_wf_top, 
equal_wf, 
req_wf, 
all_wf, 
discrete-type_wf, 
squash_wf, 
true_wf, 
pair_eta_rw, 
iff_weakening_equal, 
subtype_rel-equal, 
and_wf, 
subtype_rel_product, 
top_wf, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
productEquality, 
cumulativity, 
isectElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
independent_functionElimination, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
universeEquality, 
dependent_pairEquality, 
independent_isectElimination, 
hyp_replacement, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.
    (discrete-type(A)  {}\mRightarrow{}  (\mforall{}a:A.  discrete-type(B[a]))  {}\mRightarrow{}  discrete-type(a:A  \mtimes{}  B[a]))
 Date html generated: 
2018_05_22-PM-02_14_09
 Last ObjectModification: 
2017_10_29-PM-08_05_01
Theory : reals
Home
Index