Nuprl Lemma : proper-interval-to-int-bounded
∀a,b:ℝ.
  ∀f:{x:ℝ| x ∈ [a, b]}  ⟶ ℤ. ∃B:ℕ. ∀x:{x:ℝ| x ∈ [a, b]} . ∃y:{x:ℝ| x ∈ [a, b]} . ((x = y) ∧ (|f y| ≤ B)) supposing a < \000Cb
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rless: x < y
, 
req: x = y
, 
real: ℝ
, 
absval: |i|
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
nat: ℕ
Lemmas referenced : 
cantor-to-interval-onto-proper, 
member_rccint_lemma, 
istype-void, 
sq_stable__rleq, 
i-member_wf, 
rccint_wf, 
cantor-to-int-bounded, 
cantor-to-interval_wf, 
rleq_weakening_rless, 
istype-nat, 
bool_wf, 
req_wf, 
istype-le, 
absval_wf, 
istype-int, 
rless_wf, 
real_wf, 
req_inversion
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation_alt, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
isectElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
setIsType, 
inhabitedIsType, 
universeIsType, 
lambdaEquality_alt, 
applyEquality, 
functionIsType, 
dependent_pairFormation_alt, 
productIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation
Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    {}\mrightarrow{}  \mBbbZ{}
        \mexists{}B:\mBbbN{}.  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  \mexists{}y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  ((x  =  y)  \mwedge{}  (|f  y|  \mleq{}  B)) 
    supposing  a  <  b
Date html generated:
2019_10_30-AM-07_42_34
Last ObjectModification:
2019_06_26-PM-03_10_43
Theory : reals
Home
Index