Nuprl Lemma : cantor-to-interval_wf

a,b:ℝ.  ∀f:ℕ ⟶ 𝔹(cantor-to-interval(a;b;f) ∈ {x:ℝ(a ≤ x) ∧ (x ≤ b)} supposing a ≤ b


Proof




Definitions occuring in Statement :  cantor-to-interval: cantor-to-interval(a;b;f) rleq: x ≤ y real: nat: bool: 𝔹 uimplies: supposing a all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B prop: uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q top: Top int_upper: {i...} cantor-interval: cantor-interval(a;b;f;n) pi1: fst(t) pi2: snd(t) guard: {T}
Lemmas referenced :  nat_wf bool_wf rleq_wf real_wf cantor-to-interval_wf1 converges-to_wf cantor-interval_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self pi1_wf_top equal_wf cantor-interval-inclusion le_wf int_upper_wf primrec0_lemma constant-rleq-limit rleq_transitivity pi2_wf rleq-limit-constant
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut applyEquality hypothesis sqequalHypSubstitution sqequalRule functionEquality extract_by_obid lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache isectElimination independent_isectElimination functionExtensionality setElimination rename dependent_set_memberEquality independent_pairFormation productEquality setEquality natural_numberEquality productElimination independent_pairEquality isect_memberEquality voidElimination voidEquality independent_functionElimination

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (cantor-to-interval(a;b;f)  \mmember{}  \{x:\mBbbR{}|  (a  \mleq{}  x)  \mwedge{}  (x  \mleq{}  b)\}  )  supposing  a  \mleq{}  b



Date html generated: 2017_10_03-AM-09_54_24
Last ObjectModification: 2017_07_28-AM-08_03_46

Theory : reals


Home Index