Nuprl Lemma : cantor-interval_wf
∀[a,b:ℝ]. ∀[n:ℕ]. ∀[f:ℕn ⟶ 𝔹].  (cantor-interval(a;b;f;n) ∈ ℝ × ℝ)
Proof
Definitions occuring in Statement : 
cantor-interval: cantor-interval(a;b;f;n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cantor-interval: cantor-interval(a;b;f;n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
primrec_wf, 
real_wf, 
int_seg_wf, 
bool_wf, 
eqtt_to_assert, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
radd_wf, 
int-rmul_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesis, 
because_Cache, 
hypothesisEquality, 
independent_pairEquality, 
lambdaEquality, 
productElimination, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
addLevel, 
instantiate, 
cumulativity, 
intEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
dependent_pairFormation, 
promote_hyp, 
axiomEquality, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].    (cantor-interval(a;b;f;n)  \mmember{}  \mBbbR{}  \mtimes{}  \mBbbR{})
Date html generated:
2017_10_03-AM-09_48_44
Last ObjectModification:
2017_07_28-AM-08_00_45
Theory : reals
Home
Index