Nuprl Lemma : cantor-interval_wf

[a,b:ℝ]. ∀[n:ℕ]. ∀[f:ℕn ⟶ 𝔹].  (cantor-interval(a;b;f;n) ∈ ℝ × ℝ)


Proof




Definitions occuring in Statement :  cantor-interval: cantor-interval(a;b;f;n) real: int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cantor-interval: cantor-interval(a;b;f;n) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) guard: {T} false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b
Lemmas referenced :  primrec_wf real_wf int_seg_wf bool_wf eqtt_to_assert int-rdiv_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf radd_wf int-rmul_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesis because_Cache hypothesisEquality independent_pairEquality lambdaEquality productElimination applyEquality functionExtensionality natural_numberEquality setElimination rename lambdaFormation unionElimination equalityElimination independent_isectElimination dependent_set_memberEquality addLevel instantiate cumulativity intEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed dependent_pairFormation promote_hyp axiomEquality functionEquality isect_memberEquality

Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].    (cantor-interval(a;b;f;n)  \mmember{}  \mBbbR{}  \mtimes{}  \mBbbR{})



Date html generated: 2017_10_03-AM-09_48_44
Last ObjectModification: 2017_07_28-AM-08_00_45

Theory : reals


Home Index