Nuprl Lemma : cantor-to-interval_wf1

a,b:ℝ.  ∀f:ℕ ⟶ 𝔹(cantor-to-interval(a;b;f) ∈ {x:ℝlim n→∞.fst(cantor-interval(a;b;f;n)) x} supposing a ≤ b


Proof




Definitions occuring in Statement :  cantor-to-interval: cantor-to-interval(a;b;f) cantor-interval: cantor-interval(a;b;f;n) converges-to: lim n→∞.x[n] y rleq: x ≤ y real: nat: bool: 𝔹 uimplies: supposing a pi1: fst(t) all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T cantor-to-interval: cantor-to-interval(a;b;f) prop: uall: [x:A]. B[x] pi1: fst(t) cantor-interval-converges-ext subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q top: Top so_apply: x[s] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A converges: x[n]↓ as n→∞ exists: x:A. B[x]
Lemmas referenced :  nat_wf bool_wf rleq_wf real_wf cantor-interval-converges-ext all_wf isect_wf converges_wf cantor-interval_wf pi1_wf_top equal_wf uimplies_subtype subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self converges-to_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution hypothesis functionEquality extract_by_obid sqequalRule lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache isectElimination applyEquality instantiate productEquality productElimination independent_pairEquality isect_memberEquality voidElimination voidEquality independent_functionElimination natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation functionExtensionality dependent_set_memberEquality

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (cantor-to-interval(a;b;f)  \mmember{}  \{x:\mBbbR{}|  lim  n\mrightarrow{}\minfty{}.fst(cantor-interval(a;b;f;n))  =  x\}  )  \000Csupposing  a  \mleq{}  b



Date html generated: 2017_10_03-AM-09_54_08
Last ObjectModification: 2017_07_28-AM-08_03_31

Theory : reals


Home Index