Nuprl Lemma : real-vec-norm-positive-iff2
∀n:ℕ. ∀x:ℝ^n.  (∃i:ℕn. x i ≠ r0 
⇐⇒ r0 < ||x||)
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
real-vec: ℝ^n
, 
rneq: x ≠ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rneq-symmetry, 
rneq_wf, 
int-to-real_wf, 
exists_wf, 
int_seg_wf, 
real-vec_wf, 
nat_wf, 
real-vec-norm-positive-iff, 
rless_wf, 
real-vec-norm_wf, 
all_wf, 
iff_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
addLevel, 
allFunctionality, 
impliesFunctionality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x:\mBbbR{}\^{}n.    (\mexists{}i:\mBbbN{}n.  x  i  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  r0  <  ||x||)
Date html generated:
2017_10_03-AM-10_49_22
Last ObjectModification:
2017_06_18-PM-05_34_35
Theory : reals
Home
Index