Nuprl Lemma : reals-close-or-rneq-ext

K:ℕ+
  (∃g:ℝ ⟶ ℝ ⟶ ℕ[(∀x,y:ℝ.
                       ((((g y) 1 ∈ ℤ ((r1/r(K)) < (y x)))
                       ∧ (((g y) 2 ∈ ℤ ((r1/r(K)) < (x y)))
                       ∧ (((g y) 0 ∈ ℤ (|x y| < (r(2)/r(K))))))])


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T rabs: |x| rless-case: rless-case(x;y;n;z) rminus: -(x) le_int: i ≤j bnot: ¬bb ifthenelse: if then else fi  lt_int: i <j btrue: tt it: bfalse: ff imax: imax(a;b) experimental: experimental{impliesFunctionality}(possibleextract) rclose-or-sep: rclose-or-sep(K;x;y) uall: [x:A]. B[x] top: Top uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False sq_type: SQType(T) guard: {T} reals-close-or-rneq rless_functionality rabs-difference-lower-bound rless-iff4 rless-iff-large-diff rmax_strict_ub iff_weakening_equal radd-preserves-rless regular-less-iff decidable__le any: any x rless-iff2 bool_cases radd_functionality_wrt_rless1 rless-iff-rpositive rpositive_functionality rpositive-radd2 rpositive-iff rpositive2_functionality bdd-diff_inversion accelerate-bdd-diff rnonneg-iff imax_lb bdd-diff-equiv le_functionality so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}K:\mBbbN{}\msupplus{}
    (\mexists{}g:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbN{}3  [(\mforall{}x,y:\mBbbR{}.
                                              ((((g  x  y)  =  1)  {}\mRightarrow{}  ((r1/r(K))  <  (y  -  x)))
                                              \mwedge{}  (((g  x  y)  =  2)  {}\mRightarrow{}  ((r1/r(K))  <  (x  -  y)))
                                              \mwedge{}  (((g  x  y)  =  0)  {}\mRightarrow{}  (|x  -  y|  <  (r(2)/r(K))))))])



Date html generated: 2020_05_20-AM-11_06_01
Last ObjectModification: 2020_03_19-PM-01_16_39

Theory : reals


Home Index