Nuprl Lemma : rmul-negative-iff
∀x,y:ℝ.  ((x * y) < r0 
⇐⇒ ((r0 < x) ∧ (y < r0)) ∨ ((x < r0) ∧ (r0 < y)))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rmul-is-positive, 
rminus_wf, 
real_wf, 
rless-implies-rless, 
int-to-real_wf, 
rmul_wf, 
rless_wf, 
rsub_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
unionElimination, 
inlFormation_alt, 
promote_hyp, 
inrFormation_alt, 
sqequalRule, 
unionIsType, 
productIsType, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}x,y:\mBbbR{}.    ((x  *  y)  <  r0  \mLeftarrow{}{}\mRightarrow{}  ((r0  <  x)  \mwedge{}  (y  <  r0))  \mvee{}  ((x  <  r0)  \mwedge{}  (r0  <  y)))
Date html generated:
2019_10_29-AM-10_05_43
Last ObjectModification:
2019_01_13-PM-08_26_38
Theory : reals
Home
Index