Nuprl Lemma : rmul-negative-iff

x,y:ℝ.  ((x y) < r0 ⇐⇒ ((r0 < x) ∧ (y < r0)) ∨ ((x < r0) ∧ (r0 < y)))


Proof




Definitions occuring in Statement :  rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uimplies: supposing a prop: rev_implies:  Q or: P ∨ Q uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rmul-is-positive rminus_wf real_wf rless-implies-rless int-to-real_wf rmul_wf rless_wf rsub_wf itermSubtract_wf itermConstant_wf itermMultiply_wf itermVar_wf itermMinus_wf req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_const_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis inhabitedIsType universeIsType productElimination independent_pairFormation natural_numberEquality because_Cache independent_isectElimination independent_functionElimination unionElimination inlFormation_alt promote_hyp inrFormation_alt sqequalRule unionIsType productIsType approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}x,y:\mBbbR{}.    ((x  *  y)  <  r0  \mLeftarrow{}{}\mRightarrow{}  ((r0  <  x)  \mwedge{}  (y  <  r0))  \mvee{}  ((x  <  r0)  \mwedge{}  (r0  <  y)))



Date html generated: 2019_10_29-AM-10_05_43
Last ObjectModification: 2019_01_13-PM-08_26_38

Theory : reals


Home Index